软件应用中的涟漪效应识别

Q4 Computer Science
Anushree Agrawal, R. K. Singh
{"title":"软件应用中的涟漪效应识别","authors":"Anushree Agrawal, R. K. Singh","doi":"10.4018/ijossp.2020010103","DOIUrl":null,"url":null,"abstract":"Changes are made frequently in software to incorporate new requirements. The changes made to one class are not limited to that particular class, but they also affect other entities. Early identification of these change prone entities is very essential for minimizing future faults in the software applications. Thus, it is very important to develop quality models for identifying the ripple effect of changed classes to effectively utilize the limited resources during the software development lifecycle. Association rule mining is a popular approach suggested in literature, but a major limitation of this approach is its inability to generate recommendations in case of new addition of classes. This article suggests the development of prediction model using learning techniques to overcome this limitation. The authors evaluate the performance of thirteen statistical, ML, and search-based techniques using eight open source software applications in this work. The findings of this study are promising and support the application of SBT and ML techniques for ripple effect identification.","PeriodicalId":53605,"journal":{"name":"International Journal of Open Source Software and Processes","volume":"11 1","pages":"41-56"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Ripple Effect Identification in Software Applications\",\"authors\":\"Anushree Agrawal, R. K. Singh\",\"doi\":\"10.4018/ijossp.2020010103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Changes are made frequently in software to incorporate new requirements. The changes made to one class are not limited to that particular class, but they also affect other entities. Early identification of these change prone entities is very essential for minimizing future faults in the software applications. Thus, it is very important to develop quality models for identifying the ripple effect of changed classes to effectively utilize the limited resources during the software development lifecycle. Association rule mining is a popular approach suggested in literature, but a major limitation of this approach is its inability to generate recommendations in case of new addition of classes. This article suggests the development of prediction model using learning techniques to overcome this limitation. The authors evaluate the performance of thirteen statistical, ML, and search-based techniques using eight open source software applications in this work. The findings of this study are promising and support the application of SBT and ML techniques for ripple effect identification.\",\"PeriodicalId\":53605,\"journal\":{\"name\":\"International Journal of Open Source Software and Processes\",\"volume\":\"11 1\",\"pages\":\"41-56\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Open Source Software and Processes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijossp.2020010103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Open Source Software and Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijossp.2020010103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 6

摘要

在软件中经常进行更改以纳入新的需求。对一个类所做的更改不仅限于该特定类,还会影响其他实体。早期识别这些易发生变更的实体对于最小化软件应用程序中未来的错误是非常必要的。因此,为了在软件开发生命周期中有效地利用有限的资源,开发质量模型来识别变更类的连锁反应是非常重要的。关联规则挖掘是文献中提出的一种流行的方法,但是这种方法的一个主要限制是它不能在添加新类的情况下生成建议。本文建议利用学习技术开发预测模型来克服这一局限。作者在这项工作中使用八个开源软件应用程序评估了十三种统计、机器学习和基于搜索的技术的性能。本研究结果为SBT和ML技术在连锁反应鉴定中的应用提供了支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ripple Effect Identification in Software Applications
Changes are made frequently in software to incorporate new requirements. The changes made to one class are not limited to that particular class, but they also affect other entities. Early identification of these change prone entities is very essential for minimizing future faults in the software applications. Thus, it is very important to develop quality models for identifying the ripple effect of changed classes to effectively utilize the limited resources during the software development lifecycle. Association rule mining is a popular approach suggested in literature, but a major limitation of this approach is its inability to generate recommendations in case of new addition of classes. This article suggests the development of prediction model using learning techniques to overcome this limitation. The authors evaluate the performance of thirteen statistical, ML, and search-based techniques using eight open source software applications in this work. The findings of this study are promising and support the application of SBT and ML techniques for ripple effect identification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
16
期刊介绍: The International Journal of Open Source Software and Processes (IJOSSP) publishes high-quality peer-reviewed and original research articles on the large field of open source software and processes. This wide area entails many intriguing question and facets, including the special development process performed by a large number of geographically dispersed programmers, community issues like coordination and communication, motivations of the participants, and also economic and legal issues. Beyond this topic, open source software is an example of a highly distributed innovation process led by the users. Therefore, many aspects have relevance beyond the realm of software and its development. In this tradition, IJOSSP also publishes papers on these topics. IJOSSP is a multi-disciplinary outlet, and welcomes submissions from all relevant fields of research and applying a multitude of research approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信