模糊l -准紧拓扑空间

F. Lupiáñez
{"title":"模糊l -准紧拓扑空间","authors":"F. Lupiáñez","doi":"10.46300/91019.2021.8.5","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to study fuzzy extensions of some covering properties defined by L. Kalantan as a modification of some kinds of paracompactness-type properties due to A.V.Arhangels'skii and studied later by other authors. In fact, we obtain that: if (X,T) is a topological space and A is a subset of X, then A is Lindelöf in (X,T) if and only if its characteristic map χ_{A} is a Lindelöf subset in (X,ω(T)). If (X,τ) is a fuzzy topological space, then, (X,τ) is fuzzy Lparacompact if and only if (X,ι(τ)) is L-paracompact, i.e. fuzzy L-paracompactness is a good extension of L-paracompactness. Fuzzy L₂-paracompactness is a good extension of L₂- paracompactness. Every fuzzy Hausdorff topological space (in the Srivastava, Lal and Srivastava' or in the Wagner and McLean' sense) which is fuzzy locally compact (in the Kudri and Wagner' sense) is fuzzy L₂-paracompact","PeriodicalId":14365,"journal":{"name":"International journal of pure and applied mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Fuzzy L-paracompact Topological Spaces\",\"authors\":\"F. Lupiáñez\",\"doi\":\"10.46300/91019.2021.8.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to study fuzzy extensions of some covering properties defined by L. Kalantan as a modification of some kinds of paracompactness-type properties due to A.V.Arhangels'skii and studied later by other authors. In fact, we obtain that: if (X,T) is a topological space and A is a subset of X, then A is Lindelöf in (X,T) if and only if its characteristic map χ_{A} is a Lindelöf subset in (X,ω(T)). If (X,τ) is a fuzzy topological space, then, (X,τ) is fuzzy Lparacompact if and only if (X,ι(τ)) is L-paracompact, i.e. fuzzy L-paracompactness is a good extension of L-paracompactness. Fuzzy L₂-paracompactness is a good extension of L₂- paracompactness. Every fuzzy Hausdorff topological space (in the Srivastava, Lal and Srivastava' or in the Wagner and McLean' sense) which is fuzzy locally compact (in the Kudri and Wagner' sense) is fuzzy L₂-paracompact\",\"PeriodicalId\":14365,\"journal\":{\"name\":\"International journal of pure and applied mathematics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of pure and applied mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46300/91019.2021.8.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of pure and applied mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46300/91019.2021.8.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是研究L. Kalantan定义的一些覆盖性质的模糊扩展,作为a.v.a arhangels’skii和其他作者后来研究的一些拟紧型性质的修正。实际上,我们得到:如果(X,T)是拓扑空间,且a是X的子集,则当且仅当其特征映射χ_{a}是(X,ω(T))中的Lindelöf子集时,a在(X,T)中为Lindelöf。如果(X,τ)是模糊拓扑空间,则(X,τ)是模糊lparac紧当且仅当(X,ι(τ))是l - parac紧,即模糊l - parac紧性是l - parac紧性的一个很好的扩展。模糊L₂-副紧性是L₂-副紧性的一个很好的推广。每一个模糊Hausdorff拓扑空间(在Srivastava, Lal和Srivastava'或在Wagner和McLean'意义上)是模糊的局部紧化(在Kudri和Wagner'意义上)是模糊的L₂-准紧化
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Fuzzy L-paracompact Topological Spaces
The aim of this paper is to study fuzzy extensions of some covering properties defined by L. Kalantan as a modification of some kinds of paracompactness-type properties due to A.V.Arhangels'skii and studied later by other authors. In fact, we obtain that: if (X,T) is a topological space and A is a subset of X, then A is Lindelöf in (X,T) if and only if its characteristic map χ_{A} is a Lindelöf subset in (X,ω(T)). If (X,τ) is a fuzzy topological space, then, (X,τ) is fuzzy Lparacompact if and only if (X,ι(τ)) is L-paracompact, i.e. fuzzy L-paracompactness is a good extension of L-paracompactness. Fuzzy L₂-paracompactness is a good extension of L₂- paracompactness. Every fuzzy Hausdorff topological space (in the Srivastava, Lal and Srivastava' or in the Wagner and McLean' sense) which is fuzzy locally compact (in the Kudri and Wagner' sense) is fuzzy L₂-paracompact
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信