关于并行交替方法的一些结果

Guangbin Wang, F. Tan
{"title":"关于并行交替方法的一些结果","authors":"Guangbin Wang, F. Tan","doi":"10.0000/IJAMC.2011.3.1.131","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate two parallel alternating methods for solving the system of linear equations Ax = b and give convergence theorems for the parallel alternating methods when the coefficient matrix is a nonsingular H-matrix. Furthermore, we give one example to show our results. Keywords—nonsingular H-matrix, parallel alternating method, convergence.","PeriodicalId":23764,"journal":{"name":"World Academy of Science, Engineering and Technology, International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering","volume":"20 1","pages":"1070-1072"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Some Results on Parallel Alternating Methods\",\"authors\":\"Guangbin Wang, F. Tan\",\"doi\":\"10.0000/IJAMC.2011.3.1.131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate two parallel alternating methods for solving the system of linear equations Ax = b and give convergence theorems for the parallel alternating methods when the coefficient matrix is a nonsingular H-matrix. Furthermore, we give one example to show our results. Keywords—nonsingular H-matrix, parallel alternating method, convergence.\",\"PeriodicalId\":23764,\"journal\":{\"name\":\"World Academy of Science, Engineering and Technology, International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering\",\"volume\":\"20 1\",\"pages\":\"1070-1072\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Academy of Science, Engineering and Technology, International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.0000/IJAMC.2011.3.1.131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Academy of Science, Engineering and Technology, International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.0000/IJAMC.2011.3.1.131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了求解线性方程组Ax = b的两种并行交替方法,并给出了当系数矩阵为非奇异h矩阵时这两种并行交替方法的收敛定理。此外,我们还给出了一个例子来说明我们的结果。关键词:非奇异h矩阵,并行交替法,收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some Results on Parallel Alternating Methods
In this paper, we investigate two parallel alternating methods for solving the system of linear equations Ax = b and give convergence theorems for the parallel alternating methods when the coefficient matrix is a nonsingular H-matrix. Furthermore, we give one example to show our results. Keywords—nonsingular H-matrix, parallel alternating method, convergence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信