走向月球陨石坑的自动计数器

J. C. Gonzalez, A. Martín-González, J. Lugo-Jiménez, Víctor Uc Cetina
{"title":"走向月球陨石坑的自动计数器","authors":"J. C. Gonzalez, A. Martín-González, J. Lugo-Jiménez, Víctor Uc Cetina","doi":"10.1109/ICEEE.2014.6978267","DOIUrl":null,"url":null,"abstract":"Quantification of impact craters on planetary surfaces is relevant to understand the geological history of the planet. In order to automatize quantification of lunar craters in digital images, the first step is to develop a computational tool capable of classifying a subwindow of pixels into two possible outputs: crater / non-crater. In this paper, we provide preliminary experimental results using an adaptive boosting algorithm to train a binary classifier for lunar crater identification. Using 30 weak classifiers we obtain 0.925 and 0.94 of sensitivity and specificity, respectively.","PeriodicalId":6661,"journal":{"name":"2014 11th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","volume":"33 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards an automatic counter of lunar craters\",\"authors\":\"J. C. Gonzalez, A. Martín-González, J. Lugo-Jiménez, Víctor Uc Cetina\",\"doi\":\"10.1109/ICEEE.2014.6978267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantification of impact craters on planetary surfaces is relevant to understand the geological history of the planet. In order to automatize quantification of lunar craters in digital images, the first step is to develop a computational tool capable of classifying a subwindow of pixels into two possible outputs: crater / non-crater. In this paper, we provide preliminary experimental results using an adaptive boosting algorithm to train a binary classifier for lunar crater identification. Using 30 weak classifiers we obtain 0.925 and 0.94 of sensitivity and specificity, respectively.\",\"PeriodicalId\":6661,\"journal\":{\"name\":\"2014 11th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)\",\"volume\":\"33 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 11th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEEE.2014.6978267\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 11th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEE.2014.6978267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

行星表面陨石坑的量化与了解地球的地质历史有关。为了在数字图像中自动量化月球陨石坑,第一步是开发一种计算工具,能够将像素子窗口分类为两种可能的输出:陨石坑/非陨石坑。在本文中,我们提供了初步的实验结果,使用自适应增强算法来训练用于月球陨石坑识别的二元分类器。使用30个弱分类器,我们分别获得0.925和0.94的敏感性和特异性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards an automatic counter of lunar craters
Quantification of impact craters on planetary surfaces is relevant to understand the geological history of the planet. In order to automatize quantification of lunar craters in digital images, the first step is to develop a computational tool capable of classifying a subwindow of pixels into two possible outputs: crater / non-crater. In this paper, we provide preliminary experimental results using an adaptive boosting algorithm to train a binary classifier for lunar crater identification. Using 30 weak classifiers we obtain 0.925 and 0.94 of sensitivity and specificity, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信