局部污染物形成的精细尺度环境梯度对流水生态系统中的浮游动物群落影响很大

IF 1.3 4区 生物学 Q3 MARINE & FRESHWATER BIOLOGY
Aquatic Biology Pub Date : 2018-05-03 DOI:10.3354/AB00695
Heng Peng, W. Xiong, A. Zhan
{"title":"局部污染物形成的精细尺度环境梯度对流水生态系统中的浮游动物群落影响很大","authors":"Heng Peng, W. Xiong, A. Zhan","doi":"10.3354/AB00695","DOIUrl":null,"url":null,"abstract":"Many freshwater ecosystems suffer from multiple environmental stressors derived from anthropogenic activities. It is therefore necessary to investigate how environmental changes influence composition and functioning of biological communities such as zooplankton. At fine geographical scales, a well-known view on meta-community dynamics suggests that high dispersal can strongly homogenize community structure along water flows, largely erasing signals left by species sorting. However, a recent study by Xiong et al. (2017; Mol Ecol 26:4351−4360) challenges this view, showing that species sorting derived from an environmental gradient overrode the process of dispersal to determine the zooplankton community structure in running river ecosystems at fine geographical scales (the fine-scale species sorting hypothesis). Here we chose zooplankton communities from Fuyang River in north China to test the newly proposed hypothesis and identified the environmental factors contributing to meta-community dynamics in running water ecosystems. Multiple analyses based on high-throughput sequencing showed significantly varied zooplankton community composition and geographical distribution determined by an environmental gradient. Our study clearly shows that local chemical pollution, such as metal pollutants Cu and Mg, largely contributes to the observed patterns. Our study successfully identified local pollutants that influenced meta-community dynamics. Thus, we support the fine-scale species sorting hypothesis, indicating that a strong environmental gradient at fine geographical scales can strengthen the process of species sorting. As many rivers suffer from anthropogenic environ mental stressors, an urgent need exists to integrate both environmental and community infor mation when investigating how environmental changes influence community composition and functioning.","PeriodicalId":8111,"journal":{"name":"Aquatic Biology","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2018-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Fine-scale environmental gradients formed by local pollutants largely impact zooplankton communities in running water ecosystems\",\"authors\":\"Heng Peng, W. Xiong, A. Zhan\",\"doi\":\"10.3354/AB00695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many freshwater ecosystems suffer from multiple environmental stressors derived from anthropogenic activities. It is therefore necessary to investigate how environmental changes influence composition and functioning of biological communities such as zooplankton. At fine geographical scales, a well-known view on meta-community dynamics suggests that high dispersal can strongly homogenize community structure along water flows, largely erasing signals left by species sorting. However, a recent study by Xiong et al. (2017; Mol Ecol 26:4351−4360) challenges this view, showing that species sorting derived from an environmental gradient overrode the process of dispersal to determine the zooplankton community structure in running river ecosystems at fine geographical scales (the fine-scale species sorting hypothesis). Here we chose zooplankton communities from Fuyang River in north China to test the newly proposed hypothesis and identified the environmental factors contributing to meta-community dynamics in running water ecosystems. Multiple analyses based on high-throughput sequencing showed significantly varied zooplankton community composition and geographical distribution determined by an environmental gradient. Our study clearly shows that local chemical pollution, such as metal pollutants Cu and Mg, largely contributes to the observed patterns. Our study successfully identified local pollutants that influenced meta-community dynamics. Thus, we support the fine-scale species sorting hypothesis, indicating that a strong environmental gradient at fine geographical scales can strengthen the process of species sorting. As many rivers suffer from anthropogenic environ mental stressors, an urgent need exists to integrate both environmental and community infor mation when investigating how environmental changes influence community composition and functioning.\",\"PeriodicalId\":8111,\"journal\":{\"name\":\"Aquatic Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2018-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquatic Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3354/AB00695\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3354/AB00695","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 11

摘要

许多淡水生态系统受到来自人类活动的多种环境压力。因此,有必要研究环境变化如何影响浮游动物等生物群落的组成和功能。在精细的地理尺度上,一个著名的关于元群落动力学的观点认为,高度分散可以使群落结构沿水流强烈地均匀化,在很大程度上消除了物种分选留下的信号。然而,Xiong等人(2017;Mol Ecol 26:4351−4360)挑战了这一观点,表明来自环境梯度的物种分选在精细地理尺度上决定了河流生态系统中浮游动物群落结构(精细尺度物种分选假说)。本文以阜阳河浮游动物群落为研究对象,对上述假设进行了验证,并对影响水体生态系统元群落动态的环境因子进行了分析。基于高通量测序的多重分析显示,环境梯度决定了浮游动物群落组成和地理分布的显著变化。我们的研究清楚地表明,当地的化学污染,如金属污染物Cu和Mg,在很大程度上促成了观察到的模式。我们的研究成功地确定了影响元群落动态的当地污染物。因此,我们支持精细尺度物种分选假说,表明在精细地理尺度上强的环境梯度可以加强物种分选过程。由于许多河流受到人为的环境压力,在调查环境变化如何影响群落组成和功能时,迫切需要将环境和社区信息结合起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fine-scale environmental gradients formed by local pollutants largely impact zooplankton communities in running water ecosystems
Many freshwater ecosystems suffer from multiple environmental stressors derived from anthropogenic activities. It is therefore necessary to investigate how environmental changes influence composition and functioning of biological communities such as zooplankton. At fine geographical scales, a well-known view on meta-community dynamics suggests that high dispersal can strongly homogenize community structure along water flows, largely erasing signals left by species sorting. However, a recent study by Xiong et al. (2017; Mol Ecol 26:4351−4360) challenges this view, showing that species sorting derived from an environmental gradient overrode the process of dispersal to determine the zooplankton community structure in running river ecosystems at fine geographical scales (the fine-scale species sorting hypothesis). Here we chose zooplankton communities from Fuyang River in north China to test the newly proposed hypothesis and identified the environmental factors contributing to meta-community dynamics in running water ecosystems. Multiple analyses based on high-throughput sequencing showed significantly varied zooplankton community composition and geographical distribution determined by an environmental gradient. Our study clearly shows that local chemical pollution, such as metal pollutants Cu and Mg, largely contributes to the observed patterns. Our study successfully identified local pollutants that influenced meta-community dynamics. Thus, we support the fine-scale species sorting hypothesis, indicating that a strong environmental gradient at fine geographical scales can strengthen the process of species sorting. As many rivers suffer from anthropogenic environ mental stressors, an urgent need exists to integrate both environmental and community infor mation when investigating how environmental changes influence community composition and functioning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aquatic Biology
Aquatic Biology 生物-海洋与淡水生物学
CiteScore
2.70
自引率
0.00%
发文量
7
审稿时长
3 months
期刊介绍: AB publishes rigorously refereed and carefully selected Feature Articles, Research Articles, Reviews and Notes, as well as Comments/Reply Comments (for details see MEPS 228:1), Theme Sections, Opinion Pieces (previously called ''As I See It'') (for details consult the Guidelines for Authors) concerned with the biology, physiology, biochemistry and genetics (including the ’omics‘) of all aquatic organisms under laboratory and field conditions, and at all levels of organisation and investigation. Areas covered include: -Biological aspects of biota: Evolution and speciation; life histories; biodiversity, biogeography and phylogeography; population genetics; biological connectedness between marine and freshwater biota; paleobiology of aquatic environments; invasive species. -Biochemical and physiological aspects of aquatic life; synthesis and conversion of organic matter (mechanisms of auto- and heterotrophy, digestion, respiration, nutrition); thermo-, ion, osmo- and volume-regulation; stress and stress resistance; metabolism and energy budgets; non-genetic and genetic adaptation. -Species interactions: Environment–organism and organism–organism interrelationships; predation: defenses (physical and chemical); symbioses. -Molecular biology of aquatic life. -Behavior: Orientation in space and time; migrations; feeding and reproductive behavior; agonistic behavior. -Toxicology and water-quality effects on organisms; anthropogenic impacts on aquatic biota (e.g. pollution, fisheries); stream regulation and restoration. -Theoretical biology: mathematical modelling of biological processes and species interactions. -Methodology and equipment employed in aquatic biological research; underwater exploration and experimentation. -Exploitation of aquatic biota: Fisheries; cultivation of aquatic organisms: use, management, protection and conservation of living aquatic resources. -Reproduction and development in marine, brackish and freshwater organisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信