S. Khoperskov, I. Zinchenko, Branislav Avramov, S. Khrapov, P. Berczik, A. Saburova, M. A. Ishchenko, A. Khoperskov, C. Pulsoni, Yulia A. Venichenko, D. Bizyaev, A. Moiseev
{"title":"在IllustrisTNG星系的极端运动失调:起源,结构和内部动力学与大规模的逆旋转星系","authors":"S. Khoperskov, I. Zinchenko, Branislav Avramov, S. Khrapov, P. Berczik, A. Saburova, M. A. Ishchenko, A. Khoperskov, C. Pulsoni, Yulia A. Venichenko, D. Bizyaev, A. Moiseev","doi":"10.1093/mnras/staa3330","DOIUrl":null,"url":null,"abstract":"Modern galaxy formation theory suggests that the misalignment between stellar and gaseous components usually results from an external gas accretion and/or interaction with other galaxies. The extreme case of the kinematic misalignment is demonstrated by so-called galaxies with counterrotation that possess two distinct components rotating in opposite directions with respect to each other. We provide an in-deep analysis of galaxies with counterrotation from IllustrisTNG100 cosmological simulations. We have found $25$ galaxies with substantial stellar counterrotation in the stellar mass range of $2\\times10^{9}-3\\times10^{10}$~\\Msun. In our sample the stellar counterrotation is a result of an external gas infall happened $\\approx 2-8$~Gyr ago. The infall leads to the initial removal of pre-existing gas, which is captured and mixed together with the infalling component. The gas mixture ends up in the counterrotating gaseous disc. We show that $\\approx 90\\%$ of the stellar counterrotation formed in-situ, in the counterrotating gas. During the early phases of the infall, gas can be found in inclined extended and rather thin disc-like structures, and in some galaxies they are similar to (nearly-)~polar disc or ring-like structures. We discuss a possible link between the gas infall, AGN activity and the formation of misaligned components. In particular, we suggest that the AGN activity does not cause the counterrotation, although it is efficiently triggered by the retrograde gas infall, and it correlates well with the misaligned component appearance. We also find evidence of the stellar disc heating visible as an increase of the vertical-to-radial velocity dispersion ratio above unity in both co- and counterrotating components, which implies the importance of the kinematical misalignment in shaping the velocity ellipsoids in disc galaxies.","PeriodicalId":8452,"journal":{"name":"arXiv: Astrophysics of Galaxies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Extreme kinematic misalignment in IllustrisTNG galaxies: the origin, structure, and internal dynamics of galaxies with a large-scale counterrotation\",\"authors\":\"S. Khoperskov, I. Zinchenko, Branislav Avramov, S. Khrapov, P. Berczik, A. Saburova, M. A. Ishchenko, A. Khoperskov, C. Pulsoni, Yulia A. Venichenko, D. Bizyaev, A. Moiseev\",\"doi\":\"10.1093/mnras/staa3330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern galaxy formation theory suggests that the misalignment between stellar and gaseous components usually results from an external gas accretion and/or interaction with other galaxies. The extreme case of the kinematic misalignment is demonstrated by so-called galaxies with counterrotation that possess two distinct components rotating in opposite directions with respect to each other. We provide an in-deep analysis of galaxies with counterrotation from IllustrisTNG100 cosmological simulations. We have found $25$ galaxies with substantial stellar counterrotation in the stellar mass range of $2\\\\times10^{9}-3\\\\times10^{10}$~\\\\Msun. In our sample the stellar counterrotation is a result of an external gas infall happened $\\\\approx 2-8$~Gyr ago. The infall leads to the initial removal of pre-existing gas, which is captured and mixed together with the infalling component. The gas mixture ends up in the counterrotating gaseous disc. We show that $\\\\approx 90\\\\%$ of the stellar counterrotation formed in-situ, in the counterrotating gas. During the early phases of the infall, gas can be found in inclined extended and rather thin disc-like structures, and in some galaxies they are similar to (nearly-)~polar disc or ring-like structures. We discuss a possible link between the gas infall, AGN activity and the formation of misaligned components. In particular, we suggest that the AGN activity does not cause the counterrotation, although it is efficiently triggered by the retrograde gas infall, and it correlates well with the misaligned component appearance. We also find evidence of the stellar disc heating visible as an increase of the vertical-to-radial velocity dispersion ratio above unity in both co- and counterrotating components, which implies the importance of the kinematical misalignment in shaping the velocity ellipsoids in disc galaxies.\",\"PeriodicalId\":8452,\"journal\":{\"name\":\"arXiv: Astrophysics of Galaxies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Astrophysics of Galaxies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/mnras/staa3330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Astrophysics of Galaxies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/mnras/staa3330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Extreme kinematic misalignment in IllustrisTNG galaxies: the origin, structure, and internal dynamics of galaxies with a large-scale counterrotation
Modern galaxy formation theory suggests that the misalignment between stellar and gaseous components usually results from an external gas accretion and/or interaction with other galaxies. The extreme case of the kinematic misalignment is demonstrated by so-called galaxies with counterrotation that possess two distinct components rotating in opposite directions with respect to each other. We provide an in-deep analysis of galaxies with counterrotation from IllustrisTNG100 cosmological simulations. We have found $25$ galaxies with substantial stellar counterrotation in the stellar mass range of $2\times10^{9}-3\times10^{10}$~\Msun. In our sample the stellar counterrotation is a result of an external gas infall happened $\approx 2-8$~Gyr ago. The infall leads to the initial removal of pre-existing gas, which is captured and mixed together with the infalling component. The gas mixture ends up in the counterrotating gaseous disc. We show that $\approx 90\%$ of the stellar counterrotation formed in-situ, in the counterrotating gas. During the early phases of the infall, gas can be found in inclined extended and rather thin disc-like structures, and in some galaxies they are similar to (nearly-)~polar disc or ring-like structures. We discuss a possible link between the gas infall, AGN activity and the formation of misaligned components. In particular, we suggest that the AGN activity does not cause the counterrotation, although it is efficiently triggered by the retrograde gas infall, and it correlates well with the misaligned component appearance. We also find evidence of the stellar disc heating visible as an increase of the vertical-to-radial velocity dispersion ratio above unity in both co- and counterrotating components, which implies the importance of the kinematical misalignment in shaping the velocity ellipsoids in disc galaxies.