R. Yadav, Suren Patwardhan, Ranjana J. Shourie, M. Aslam, Balasubramaniam Kavaipatti, D. Kabra, A. Antony
{"title":"钙钛矿太阳能电池中镍氧化物能带结构的优化","authors":"R. Yadav, Suren Patwardhan, Ranjana J. Shourie, M. Aslam, Balasubramaniam Kavaipatti, D. Kabra, A. Antony","doi":"10.1109/icee44586.2018.8937888","DOIUrl":null,"url":null,"abstract":"Inorganic materials for the charge transport layer in solar cells are increasingly being investigated. Non-stoichiometric nickel oxide (NiOX), owing to its larger band gap and stability is a promising hole transport material. In this work, we critically examine the electronic structure and hole-selectivity of NiOX films at various oxygen partial pressure (pO2) values during radio frequency (RF) sputtering. At pO2 of 0.25, a maximum in the Ni3+/Ni2+ ratio (7.09) is obtained. At this ratio, the band alignment of NiOX with that of methyl-ammonium lead iodide (MAPI) is observed to be most suitable. There is no misalignment of the valence band edges while conduction band edges separated by about 1 eV. Initial results of the MAPI perovskite solar cell with this optimized NiOX as hole transport layer showed 7.7% efficiency. This result is promising to take the work further for enhancement of efficiency as well as for in-depth engineering of the energy bands of NiOX.","PeriodicalId":6590,"journal":{"name":"2018 4th IEEE International Conference on Emerging Electronics (ICEE)","volume":"16 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Tuning the band structure of nickel oxide for efficient hole extraction in perovskite solar cells\",\"authors\":\"R. Yadav, Suren Patwardhan, Ranjana J. Shourie, M. Aslam, Balasubramaniam Kavaipatti, D. Kabra, A. Antony\",\"doi\":\"10.1109/icee44586.2018.8937888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inorganic materials for the charge transport layer in solar cells are increasingly being investigated. Non-stoichiometric nickel oxide (NiOX), owing to its larger band gap and stability is a promising hole transport material. In this work, we critically examine the electronic structure and hole-selectivity of NiOX films at various oxygen partial pressure (pO2) values during radio frequency (RF) sputtering. At pO2 of 0.25, a maximum in the Ni3+/Ni2+ ratio (7.09) is obtained. At this ratio, the band alignment of NiOX with that of methyl-ammonium lead iodide (MAPI) is observed to be most suitable. There is no misalignment of the valence band edges while conduction band edges separated by about 1 eV. Initial results of the MAPI perovskite solar cell with this optimized NiOX as hole transport layer showed 7.7% efficiency. This result is promising to take the work further for enhancement of efficiency as well as for in-depth engineering of the energy bands of NiOX.\",\"PeriodicalId\":6590,\"journal\":{\"name\":\"2018 4th IEEE International Conference on Emerging Electronics (ICEE)\",\"volume\":\"16 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 4th IEEE International Conference on Emerging Electronics (ICEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icee44586.2018.8937888\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 4th IEEE International Conference on Emerging Electronics (ICEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icee44586.2018.8937888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Tuning the band structure of nickel oxide for efficient hole extraction in perovskite solar cells
Inorganic materials for the charge transport layer in solar cells are increasingly being investigated. Non-stoichiometric nickel oxide (NiOX), owing to its larger band gap and stability is a promising hole transport material. In this work, we critically examine the electronic structure and hole-selectivity of NiOX films at various oxygen partial pressure (pO2) values during radio frequency (RF) sputtering. At pO2 of 0.25, a maximum in the Ni3+/Ni2+ ratio (7.09) is obtained. At this ratio, the band alignment of NiOX with that of methyl-ammonium lead iodide (MAPI) is observed to be most suitable. There is no misalignment of the valence band edges while conduction band edges separated by about 1 eV. Initial results of the MAPI perovskite solar cell with this optimized NiOX as hole transport layer showed 7.7% efficiency. This result is promising to take the work further for enhancement of efficiency as well as for in-depth engineering of the energy bands of NiOX.