三变量二次型解耦:一个完整的表征

Shaoming Guo, Changkeun Oh, J. Roos, Po-Lam Yung, Pavel Zorin-Kranich
{"title":"三变量二次型解耦:一个完整的表征","authors":"Shaoming Guo, Changkeun Oh, J. Roos, Po-Lam Yung, Pavel Zorin-Kranich","doi":"10.4171/RMI/1332","DOIUrl":null,"url":null,"abstract":"We prove sharp decoupling inequalities for all degenerate surfaces of codimension two in $\\mathbb{R}^5$ given by two quadratic forms in three variables. Together with previous work by Demeter, Guo, and Shi in the non-degenerate case (arXiv:1609.04107), this provides a classification of decoupling inequalities for pairs of quadratic forms in three variables.","PeriodicalId":8451,"journal":{"name":"arXiv: Classical Analysis and ODEs","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Decoupling for two quadratic forms in three variables: a complete characterization\",\"authors\":\"Shaoming Guo, Changkeun Oh, J. Roos, Po-Lam Yung, Pavel Zorin-Kranich\",\"doi\":\"10.4171/RMI/1332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove sharp decoupling inequalities for all degenerate surfaces of codimension two in $\\\\mathbb{R}^5$ given by two quadratic forms in three variables. Together with previous work by Demeter, Guo, and Shi in the non-degenerate case (arXiv:1609.04107), this provides a classification of decoupling inequalities for pairs of quadratic forms in three variables.\",\"PeriodicalId\":8451,\"journal\":{\"name\":\"arXiv: Classical Analysis and ODEs\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Classical Analysis and ODEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/RMI/1332\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/RMI/1332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们证明了$\mathbb{R}^5$中所有余维数为2的退化曲面的尖锐解耦不等式。结合Demeter, Guo和Shi之前在非退化情况下的工作(arXiv:1609.04107),本文提供了三变量二次型对解耦不等式的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decoupling for two quadratic forms in three variables: a complete characterization
We prove sharp decoupling inequalities for all degenerate surfaces of codimension two in $\mathbb{R}^5$ given by two quadratic forms in three variables. Together with previous work by Demeter, Guo, and Shi in the non-degenerate case (arXiv:1609.04107), this provides a classification of decoupling inequalities for pairs of quadratic forms in three variables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信