{"title":"日本保护园艺节能技术的发展趋势","authors":"Ryosuke Yamanaka, H. Kawashima","doi":"10.6090/jarq.56.237","DOIUrl":null,"url":null,"abstract":"In Japan, several protected horticultural farms depend on nonrenewable sources of energy, such as fossil fuels. However, widespread consumption of fossil fuels causes global warming, and fluctuations in fossil fuel prices may adversely affect farm management. Thus, new low-cost energy-saving techniques have been developed recently. For instance, a multilayered thermal curtain fabricated from nanofiber enhanced the thermal insulation of greenhouses, thereby reducing fossil fuel costs by approximately 35%-51%. Additionally, a local heating technique, which selectively heats areas surrounding the tomato shoot apexes and flower clusters using hanging warm air ducts, has been applied to reduce energy consumption in cherry tomato or tomato cultivation, reducing reduced fossil fuel costs by approximately 10% compared with the conventional method using ground-fixed warm air ducts. Furthermore, a low-cost multivariable environmental control system, “YoshiMax,” simultaneously controlled the ambient temperature and CO 2 concentration in a greenhouse along with the frequency of fertigation in response to solar radiation; this improved plant growth and reduced CO 2 and fertilization costs. These and other similar techniques are expected to enable sustainable agricultural management. To increase the efficiency of energy use, it is also effective to increase yield per energy input via high-density planting using a movable bench, etc.","PeriodicalId":14700,"journal":{"name":"Jarq-japan Agricultural Research Quarterly","volume":"33 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trends in the Development of Energy-saving Techniques for Protected Horticulture in Japan\",\"authors\":\"Ryosuke Yamanaka, H. Kawashima\",\"doi\":\"10.6090/jarq.56.237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In Japan, several protected horticultural farms depend on nonrenewable sources of energy, such as fossil fuels. However, widespread consumption of fossil fuels causes global warming, and fluctuations in fossil fuel prices may adversely affect farm management. Thus, new low-cost energy-saving techniques have been developed recently. For instance, a multilayered thermal curtain fabricated from nanofiber enhanced the thermal insulation of greenhouses, thereby reducing fossil fuel costs by approximately 35%-51%. Additionally, a local heating technique, which selectively heats areas surrounding the tomato shoot apexes and flower clusters using hanging warm air ducts, has been applied to reduce energy consumption in cherry tomato or tomato cultivation, reducing reduced fossil fuel costs by approximately 10% compared with the conventional method using ground-fixed warm air ducts. Furthermore, a low-cost multivariable environmental control system, “YoshiMax,” simultaneously controlled the ambient temperature and CO 2 concentration in a greenhouse along with the frequency of fertigation in response to solar radiation; this improved plant growth and reduced CO 2 and fertilization costs. These and other similar techniques are expected to enable sustainable agricultural management. To increase the efficiency of energy use, it is also effective to increase yield per energy input via high-density planting using a movable bench, etc.\",\"PeriodicalId\":14700,\"journal\":{\"name\":\"Jarq-japan Agricultural Research Quarterly\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jarq-japan Agricultural Research Quarterly\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.6090/jarq.56.237\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jarq-japan Agricultural Research Quarterly","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.6090/jarq.56.237","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Trends in the Development of Energy-saving Techniques for Protected Horticulture in Japan
In Japan, several protected horticultural farms depend on nonrenewable sources of energy, such as fossil fuels. However, widespread consumption of fossil fuels causes global warming, and fluctuations in fossil fuel prices may adversely affect farm management. Thus, new low-cost energy-saving techniques have been developed recently. For instance, a multilayered thermal curtain fabricated from nanofiber enhanced the thermal insulation of greenhouses, thereby reducing fossil fuel costs by approximately 35%-51%. Additionally, a local heating technique, which selectively heats areas surrounding the tomato shoot apexes and flower clusters using hanging warm air ducts, has been applied to reduce energy consumption in cherry tomato or tomato cultivation, reducing reduced fossil fuel costs by approximately 10% compared with the conventional method using ground-fixed warm air ducts. Furthermore, a low-cost multivariable environmental control system, “YoshiMax,” simultaneously controlled the ambient temperature and CO 2 concentration in a greenhouse along with the frequency of fertigation in response to solar radiation; this improved plant growth and reduced CO 2 and fertilization costs. These and other similar techniques are expected to enable sustainable agricultural management. To increase the efficiency of energy use, it is also effective to increase yield per energy input via high-density planting using a movable bench, etc.
期刊介绍:
The Japan Agricultural Research Quarterly (JARQ) is a publication of the Japan International Research Center for Agricultural Sciences (JIRCAS), which provides readers overseas with the latest information on key achievements and developments in agricultural research in Japan, with the expectation that this information would contribute to the agricultural development of countries in tropical and subtropical regions.