以铝和碱金属为基础的氢非均相化合物生成氢

S. R. Askhadullin, Victor Konstantinovich Milinchuk
{"title":"以铝和碱金属为基础的氢非均相化合物生成氢","authors":"S. R. Askhadullin, Victor Konstantinovich Milinchuk","doi":"10.3897/NUCET.7.69178","DOIUrl":null,"url":null,"abstract":"The process of hydrogen formation and the associated risk of combustion and explosion is a complex problem concerned with the hydrogen and radiation safety of nuclear reactors. Lithium, potassium and sodium hydroxides are used in VVER reactors as corrective additives for keeping the hydrogen potential of the water coolant with boric acid at a controlled level of 5.8 to 10.3. In the process of investigating the interaction of aqueous solutions of the above hydroxides with aluminum, the most chemically active of these is lithium hydroxide; this reaction proceeds with hydrogen formed at a high rate at room temperature (in an exothermic mode). The processes of hydrogen generation in hydroheterogeneous compositions with potassium and sodium hydroxides proceed at an acceptable rate with heating to ~ 60 °C. The kinetics of hydrogen generation depends in a complex way on the content of boric acid, namely, the hydrogen yield is at a level of ~ 1000 ml at a low concentration of 0.01 to 0.05 g/l, and there is no hydrogen formation at a concentration of 0.6 g/l. According to the coolant quality standards, in the hot state of a VVER-1000 unit or in the reactor state at the minimum controlled power level, the total concentration of alkali metals is about 1 mg/dm3, i.e. two to three orders of magnitude as less as in the investigated compositions. The discovery of the influence of alkali metal hydroxides on the formation of hydrogen with the participation of structural materials based on the example of aluminum makes it possible to suggest that the hydroxides of these metals contained in the coolant in a small amount can also take part in the hydroheterogeneous process of formation of minor hydrogen amounts. The potential for hydrogen formation in such a way needs to be taken into account during long-term operation of nuclear reactors, and during accidents and incidents at NPPs","PeriodicalId":100969,"journal":{"name":"Nuclear Energy and Technology","volume":"18 1","pages":"133-138"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generation of hydrogen by hydroheterogeneous compositions based on aluminum and alkali metals\",\"authors\":\"S. R. Askhadullin, Victor Konstantinovich Milinchuk\",\"doi\":\"10.3897/NUCET.7.69178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The process of hydrogen formation and the associated risk of combustion and explosion is a complex problem concerned with the hydrogen and radiation safety of nuclear reactors. Lithium, potassium and sodium hydroxides are used in VVER reactors as corrective additives for keeping the hydrogen potential of the water coolant with boric acid at a controlled level of 5.8 to 10.3. In the process of investigating the interaction of aqueous solutions of the above hydroxides with aluminum, the most chemically active of these is lithium hydroxide; this reaction proceeds with hydrogen formed at a high rate at room temperature (in an exothermic mode). The processes of hydrogen generation in hydroheterogeneous compositions with potassium and sodium hydroxides proceed at an acceptable rate with heating to ~ 60 °C. The kinetics of hydrogen generation depends in a complex way on the content of boric acid, namely, the hydrogen yield is at a level of ~ 1000 ml at a low concentration of 0.01 to 0.05 g/l, and there is no hydrogen formation at a concentration of 0.6 g/l. According to the coolant quality standards, in the hot state of a VVER-1000 unit or in the reactor state at the minimum controlled power level, the total concentration of alkali metals is about 1 mg/dm3, i.e. two to three orders of magnitude as less as in the investigated compositions. The discovery of the influence of alkali metal hydroxides on the formation of hydrogen with the participation of structural materials based on the example of aluminum makes it possible to suggest that the hydroxides of these metals contained in the coolant in a small amount can also take part in the hydroheterogeneous process of formation of minor hydrogen amounts. The potential for hydrogen formation in such a way needs to be taken into account during long-term operation of nuclear reactors, and during accidents and incidents at NPPs\",\"PeriodicalId\":100969,\"journal\":{\"name\":\"Nuclear Energy and Technology\",\"volume\":\"18 1\",\"pages\":\"133-138\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Energy and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3897/NUCET.7.69178\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Energy and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3897/NUCET.7.69178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

氢的形成过程及其燃烧爆炸危险是一个涉及核反应堆氢与辐射安全的复杂问题。氢氧化锂、钾和氢氧化钠在VVER反应堆中用作校正添加剂,以使含硼酸的水冷剂的氢势保持在5.8至10.3的受控水平。在研究上述氢氧化物水溶液与铝的相互作用过程中,化学活性最高的是氢氧化锂;在室温下(在放热模式下)以高速率生成氢气进行反应。在加热至~ 60°C时,以可接受的速率在氢氧化钾和氢氧化钠的非均相组合物中生成氢的过程进行。产氢动力学与硼酸的含量有复杂的关系,即在0.01 ~ 0.05 g/l的低浓度下,产氢量为~ 1000 ml,而在0.6 g/l的浓度下则不产氢。根据冷却剂质量标准,在VVER-1000机组的热态或在最小控制功率水平的反应堆状态下,碱金属的总浓度约为1 mg/dm3,即比所研究的组合物低两到三个数量级。在以铝为例的结构材料的参与下,碱金属氢氧化物对氢的形成的影响的发现使人们有可能提出,冷却剂中含有的少量碱金属氢氧化物也可以参与形成少量氢的非均相过程。在核反应堆的长期运行过程中,以及在核电站发生事故和事故时,需要考虑以这种方式形成氢气的可能性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generation of hydrogen by hydroheterogeneous compositions based on aluminum and alkali metals
The process of hydrogen formation and the associated risk of combustion and explosion is a complex problem concerned with the hydrogen and radiation safety of nuclear reactors. Lithium, potassium and sodium hydroxides are used in VVER reactors as corrective additives for keeping the hydrogen potential of the water coolant with boric acid at a controlled level of 5.8 to 10.3. In the process of investigating the interaction of aqueous solutions of the above hydroxides with aluminum, the most chemically active of these is lithium hydroxide; this reaction proceeds with hydrogen formed at a high rate at room temperature (in an exothermic mode). The processes of hydrogen generation in hydroheterogeneous compositions with potassium and sodium hydroxides proceed at an acceptable rate with heating to ~ 60 °C. The kinetics of hydrogen generation depends in a complex way on the content of boric acid, namely, the hydrogen yield is at a level of ~ 1000 ml at a low concentration of 0.01 to 0.05 g/l, and there is no hydrogen formation at a concentration of 0.6 g/l. According to the coolant quality standards, in the hot state of a VVER-1000 unit or in the reactor state at the minimum controlled power level, the total concentration of alkali metals is about 1 mg/dm3, i.e. two to three orders of magnitude as less as in the investigated compositions. The discovery of the influence of alkali metal hydroxides on the formation of hydrogen with the participation of structural materials based on the example of aluminum makes it possible to suggest that the hydroxides of these metals contained in the coolant in a small amount can also take part in the hydroheterogeneous process of formation of minor hydrogen amounts. The potential for hydrogen formation in such a way needs to be taken into account during long-term operation of nuclear reactors, and during accidents and incidents at NPPs
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信