{"title":"平铺的整数线性规划模型","authors":"Gennaro Auricchio, L. Ferrarini, Greta Lanzarotto","doi":"10.1080/17459737.2023.2180812","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an integer linear programming model whose solutions are the aperiodic rhythms tiling with a given rhythm A. We show how it can be used to define an iterative algorithm that, given a period n, finds all the rhythms which tile with a given rhythm A and also to efficiently check the necessity of the Coven-Meyerowitz condition (T2). To conclude, we run several experiments to validate the time efficiency of the model.","PeriodicalId":50138,"journal":{"name":"Journal of Mathematics and Music","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2021-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An integer linear programming model for tilings\",\"authors\":\"Gennaro Auricchio, L. Ferrarini, Greta Lanzarotto\",\"doi\":\"10.1080/17459737.2023.2180812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an integer linear programming model whose solutions are the aperiodic rhythms tiling with a given rhythm A. We show how it can be used to define an iterative algorithm that, given a period n, finds all the rhythms which tile with a given rhythm A and also to efficiently check the necessity of the Coven-Meyerowitz condition (T2). To conclude, we run several experiments to validate the time efficiency of the model.\",\"PeriodicalId\":50138,\"journal\":{\"name\":\"Journal of Mathematics and Music\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics and Music\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/17459737.2023.2180812\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics and Music","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/17459737.2023.2180812","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
In this paper, we propose an integer linear programming model whose solutions are the aperiodic rhythms tiling with a given rhythm A. We show how it can be used to define an iterative algorithm that, given a period n, finds all the rhythms which tile with a given rhythm A and also to efficiently check the necessity of the Coven-Meyerowitz condition (T2). To conclude, we run several experiments to validate the time efficiency of the model.
期刊介绍:
Journal of Mathematics and Music aims to advance the use of mathematical modelling and computation in music theory. The Journal focuses on mathematical approaches to musical structures and processes, including mathematical investigations into music-theoretic or compositional issues as well as mathematically motivated analyses of musical works or performances. In consideration of the deep unsolved ontological and epistemological questions concerning knowledge about music, the Journal is open to a broad array of methodologies and topics, particularly those outside of established research fields such as acoustics, sound engineering, auditory perception, linguistics etc.