微流控生物芯片的安全性

Huili Chen, S. Potluri, F. Koushanfar
{"title":"微流控生物芯片的安全性","authors":"Huili Chen, S. Potluri, F. Koushanfar","doi":"10.1145/3382127","DOIUrl":null,"url":null,"abstract":"With the advancement of system miniaturization and automation, Lab-on-a-Chip (LoC) technology has revolutionized traditional experimental procedures. Microfluidic Biochip (MFB) is an emerging branch of LoC with wide medical applications such as DNA sequencing, drug delivery, and point of care diagnostics. Due to the critical usage of MFBs, their security is of great importance. In this article, we exploit the vulnerabilities of two types of MFBs: Flow-based Microfluidic Biochip (FMFB) and Digital Microfluidic Biochip (DMFB). We propose a systematic framework for applying Reverse Engineering (RE) attacks and Hardware Trojan (HT) attacks on MFBs as well as for practical countermeasures against the proposed attacks. We evaluate the attacks and defense on various benchmarks where experimental results prove the effectiveness of our methods. Security metrics are defined to quantify the vulnerability of MFBs. The overhead and performance of the proposed attacks as well as countermeasures are also discussed.","PeriodicalId":6933,"journal":{"name":"ACM Transactions on Design Automation of Electronic Systems (TODAES)","volume":"45 1","pages":"1 - 29"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Security of Microfluidic Biochip\",\"authors\":\"Huili Chen, S. Potluri, F. Koushanfar\",\"doi\":\"10.1145/3382127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the advancement of system miniaturization and automation, Lab-on-a-Chip (LoC) technology has revolutionized traditional experimental procedures. Microfluidic Biochip (MFB) is an emerging branch of LoC with wide medical applications such as DNA sequencing, drug delivery, and point of care diagnostics. Due to the critical usage of MFBs, their security is of great importance. In this article, we exploit the vulnerabilities of two types of MFBs: Flow-based Microfluidic Biochip (FMFB) and Digital Microfluidic Biochip (DMFB). We propose a systematic framework for applying Reverse Engineering (RE) attacks and Hardware Trojan (HT) attacks on MFBs as well as for practical countermeasures against the proposed attacks. We evaluate the attacks and defense on various benchmarks where experimental results prove the effectiveness of our methods. Security metrics are defined to quantify the vulnerability of MFBs. The overhead and performance of the proposed attacks as well as countermeasures are also discussed.\",\"PeriodicalId\":6933,\"journal\":{\"name\":\"ACM Transactions on Design Automation of Electronic Systems (TODAES)\",\"volume\":\"45 1\",\"pages\":\"1 - 29\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Design Automation of Electronic Systems (TODAES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3382127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Design Automation of Electronic Systems (TODAES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3382127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

随着系统小型化和自动化的发展,芯片实验室(Lab-on-a-Chip, LoC)技术彻底改变了传统的实验程序。微流控生物芯片(MFB)是LoC的一个新兴分支,具有广泛的医疗应用,如DNA测序,药物输送和护理点诊断。由于mfb的重要用途,其安全性非常重要。在本文中,我们利用两种类型的mfb:基于流动的微流控生物芯片(FMFB)和数字微流控生物芯片(DMFB)的漏洞。我们提出了一个系统框架,用于对mfb应用反向工程(RE)攻击和硬件木马(HT)攻击,以及针对所提出的攻击的实际对策。我们在各种基准测试中评估了攻击和防御,实验结果证明了我们方法的有效性。定义了安全度量来量化mfb的脆弱性。本文还讨论了所提出的攻击的开销和性能以及应对措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Security of Microfluidic Biochip
With the advancement of system miniaturization and automation, Lab-on-a-Chip (LoC) technology has revolutionized traditional experimental procedures. Microfluidic Biochip (MFB) is an emerging branch of LoC with wide medical applications such as DNA sequencing, drug delivery, and point of care diagnostics. Due to the critical usage of MFBs, their security is of great importance. In this article, we exploit the vulnerabilities of two types of MFBs: Flow-based Microfluidic Biochip (FMFB) and Digital Microfluidic Biochip (DMFB). We propose a systematic framework for applying Reverse Engineering (RE) attacks and Hardware Trojan (HT) attacks on MFBs as well as for practical countermeasures against the proposed attacks. We evaluate the attacks and defense on various benchmarks where experimental results prove the effectiveness of our methods. Security metrics are defined to quantify the vulnerability of MFBs. The overhead and performance of the proposed attacks as well as countermeasures are also discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信