面向qos的边缘计算容量规划

Yu Xiao, Marius Noreikis, Antti Ylä-Jääski
{"title":"面向qos的边缘计算容量规划","authors":"Yu Xiao, Marius Noreikis, Antti Ylä-Jääski","doi":"10.1109/ICC.2017.7997387","DOIUrl":null,"url":null,"abstract":"An increasing number of online services are hosted on public clouds. However, since a centralized cloud architecture imposes high network latency, researchers suggested moving latency sensitive applications, such as virtual and augmented reality ones, to the edge of the network. Nevertheless, little has been done for edge layer capacity estimation resulting in a great need towards practical tools and techniques for initial capacity planning. In this work we provide a novel capacity planning solution for hierarchical edge cloud that considers QoS requirements in terms of response delay, and diverse demands for CPU, GPU and network resources. Our solution improves edge utilization by combining complementary resource demands while satisfying QoS requirements. We prove effectiveness of our solution through a case study where we plan edge capacity for deploying an AR navigation and information system.","PeriodicalId":6517,"journal":{"name":"2017 IEEE International Conference on Communications (ICC)","volume":"130 1 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"QoS-oriented capacity planning for edge computing\",\"authors\":\"Yu Xiao, Marius Noreikis, Antti Ylä-Jääski\",\"doi\":\"10.1109/ICC.2017.7997387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An increasing number of online services are hosted on public clouds. However, since a centralized cloud architecture imposes high network latency, researchers suggested moving latency sensitive applications, such as virtual and augmented reality ones, to the edge of the network. Nevertheless, little has been done for edge layer capacity estimation resulting in a great need towards practical tools and techniques for initial capacity planning. In this work we provide a novel capacity planning solution for hierarchical edge cloud that considers QoS requirements in terms of response delay, and diverse demands for CPU, GPU and network resources. Our solution improves edge utilization by combining complementary resource demands while satisfying QoS requirements. We prove effectiveness of our solution through a case study where we plan edge capacity for deploying an AR navigation and information system.\",\"PeriodicalId\":6517,\"journal\":{\"name\":\"2017 IEEE International Conference on Communications (ICC)\",\"volume\":\"130 1 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Communications (ICC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICC.2017.7997387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Communications (ICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICC.2017.7997387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

摘要

越来越多的在线服务托管在公共云上。然而,由于集中式云架构带来了很高的网络延迟,研究人员建议将延迟敏感应用程序(如虚拟现实和增强现实应用程序)移动到网络边缘。然而,对于边缘层容量估计所做的工作很少,因此非常需要实用的工具和技术来进行初始容量规划。在这项工作中,我们为分层边缘云提供了一种新的容量规划解决方案,该解决方案考虑了响应延迟方面的QoS要求,以及对CPU, GPU和网络资源的不同需求。我们的解决方案通过结合互补的资源需求来提高边缘利用率,同时满足QoS要求。我们通过一个案例研究证明了我们的解决方案的有效性,我们计划部署AR导航和信息系统的边缘容量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
QoS-oriented capacity planning for edge computing
An increasing number of online services are hosted on public clouds. However, since a centralized cloud architecture imposes high network latency, researchers suggested moving latency sensitive applications, such as virtual and augmented reality ones, to the edge of the network. Nevertheless, little has been done for edge layer capacity estimation resulting in a great need towards practical tools and techniques for initial capacity planning. In this work we provide a novel capacity planning solution for hierarchical edge cloud that considers QoS requirements in terms of response delay, and diverse demands for CPU, GPU and network resources. Our solution improves edge utilization by combining complementary resource demands while satisfying QoS requirements. We prove effectiveness of our solution through a case study where we plan edge capacity for deploying an AR navigation and information system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信