{"title":"高维结空间上形式可积的复结构","authors":"D. Fiorenza, H. Lê","doi":"10.4310/jsg.2021.v19.n3.a1","DOIUrl":null,"url":null,"abstract":"Let $S$ be a compact oriented finite dimensional manifold and $M$ a finite dimensional Riemannian manifold, let ${\\rm Imm}_f(S,M)$ the space of all free immersions $\\varphi:S \\to M$ and let $B^+_{i,f}(S,M)$ the quotient space ${\\rm Imm}_f(S,M)/{\\rm Diff}^+(S)$, where ${\\rm Diff}^+(S)$ denotes the group of orientation preserving diffeomorphisms of $S$. In this paper we prove that if $M$ admits a parallel $r$-fold vector cross product $\\varphi \\in \\Omega ^r(M, TM)$ and $\\dim S = r-1$ then $B^+_{i,f}(S,M)$ is a formally Kahler manifold. This generalizes Brylinski's, LeBrun's and Verbitsky's results for the case that $S$ is a codimension 2 submanifold in $M$, and $S = S^1$ or $M$ is a torsion-free $G_2$-manifold respectively.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Formally integrable complex structures on higher dimensional knot spaces\",\"authors\":\"D. Fiorenza, H. Lê\",\"doi\":\"10.4310/jsg.2021.v19.n3.a1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $S$ be a compact oriented finite dimensional manifold and $M$ a finite dimensional Riemannian manifold, let ${\\\\rm Imm}_f(S,M)$ the space of all free immersions $\\\\varphi:S \\\\to M$ and let $B^+_{i,f}(S,M)$ the quotient space ${\\\\rm Imm}_f(S,M)/{\\\\rm Diff}^+(S)$, where ${\\\\rm Diff}^+(S)$ denotes the group of orientation preserving diffeomorphisms of $S$. In this paper we prove that if $M$ admits a parallel $r$-fold vector cross product $\\\\varphi \\\\in \\\\Omega ^r(M, TM)$ and $\\\\dim S = r-1$ then $B^+_{i,f}(S,M)$ is a formally Kahler manifold. This generalizes Brylinski's, LeBrun's and Verbitsky's results for the case that $S$ is a codimension 2 submanifold in $M$, and $S = S^1$ or $M$ is a torsion-free $G_2$-manifold respectively.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/jsg.2021.v19.n3.a1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jsg.2021.v19.n3.a1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Formally integrable complex structures on higher dimensional knot spaces
Let $S$ be a compact oriented finite dimensional manifold and $M$ a finite dimensional Riemannian manifold, let ${\rm Imm}_f(S,M)$ the space of all free immersions $\varphi:S \to M$ and let $B^+_{i,f}(S,M)$ the quotient space ${\rm Imm}_f(S,M)/{\rm Diff}^+(S)$, where ${\rm Diff}^+(S)$ denotes the group of orientation preserving diffeomorphisms of $S$. In this paper we prove that if $M$ admits a parallel $r$-fold vector cross product $\varphi \in \Omega ^r(M, TM)$ and $\dim S = r-1$ then $B^+_{i,f}(S,M)$ is a formally Kahler manifold. This generalizes Brylinski's, LeBrun's and Verbitsky's results for the case that $S$ is a codimension 2 submanifold in $M$, and $S = S^1$ or $M$ is a torsion-free $G_2$-manifold respectively.