SNF处理电化学操作:液态金属和盐介质净化

A. S. Shchepin, A. M. Koshcheev, Ivan V. Kuznetsov, M. Kalenova, I. M. Melnikova
{"title":"SNF处理电化学操作:液态金属和盐介质净化","authors":"A. S. Shchepin, A. M. Koshcheev, Ivan V. Kuznetsov, M. Kalenova, I. M. Melnikova","doi":"10.3897/nucet.8.82620","DOIUrl":null,"url":null,"abstract":"The paper investigates the process of regeneration of a liquid metal medium used in the pyroelectrochemical reprocessing of spent mixed uranium-plutonium nitride fuel produced by a fast neutron reactor. The investigation concerns the interaction of liquid cadmium with sludge formed during the anodic dissolution of ceramic nitride pellets in a 3LiCl-2KCl melt medium as well as the possibility of its purification by filtration from individual metal fission products. Anode sludge is represented by fission products of the platinum group, zirconium, molybdenum and technetium. It was determined by scanning electron microscopy that the metal product is composed of several intergrowth phases. It was found that upon contact of a polymetallic alloy simulating anode sludge with a melt, the liquid metal phase is saturated to 0.025 wt% of Pd, 0.01 wt% of Rh for 50 hours at 500 °C, while zirconium forms an insoluble dispersed intermetallic compound ZrCd3. Powders of molybdenum and technetium, which are not wetted with cadmium, can be completely removed using a filter mesh of plain weaving of the P-200 type. It is also possible to remove zirconium from anodic cadmium by filtration. The filtration efficiency of ruthenium and palladium powders did not exceed 54.3 and 13.1 wt%, respectively, due to partial dissolution and thinning of particles, which will lead to saturation of the liquid metal phase and the need to purify it by alternative methods.","PeriodicalId":100969,"journal":{"name":"Nuclear Energy and Technology","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SNF processing electrochemical operations: liquid-metal and salt medium purification\",\"authors\":\"A. S. Shchepin, A. M. Koshcheev, Ivan V. Kuznetsov, M. Kalenova, I. M. Melnikova\",\"doi\":\"10.3897/nucet.8.82620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper investigates the process of regeneration of a liquid metal medium used in the pyroelectrochemical reprocessing of spent mixed uranium-plutonium nitride fuel produced by a fast neutron reactor. The investigation concerns the interaction of liquid cadmium with sludge formed during the anodic dissolution of ceramic nitride pellets in a 3LiCl-2KCl melt medium as well as the possibility of its purification by filtration from individual metal fission products. Anode sludge is represented by fission products of the platinum group, zirconium, molybdenum and technetium. It was determined by scanning electron microscopy that the metal product is composed of several intergrowth phases. It was found that upon contact of a polymetallic alloy simulating anode sludge with a melt, the liquid metal phase is saturated to 0.025 wt% of Pd, 0.01 wt% of Rh for 50 hours at 500 °C, while zirconium forms an insoluble dispersed intermetallic compound ZrCd3. Powders of molybdenum and technetium, which are not wetted with cadmium, can be completely removed using a filter mesh of plain weaving of the P-200 type. It is also possible to remove zirconium from anodic cadmium by filtration. The filtration efficiency of ruthenium and palladium powders did not exceed 54.3 and 13.1 wt%, respectively, due to partial dissolution and thinning of particles, which will lead to saturation of the liquid metal phase and the need to purify it by alternative methods.\",\"PeriodicalId\":100969,\"journal\":{\"name\":\"Nuclear Energy and Technology\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Energy and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3897/nucet.8.82620\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Energy and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3897/nucet.8.82620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了快中子反应堆产生的铀-钚混合氮化燃料乏燃料热电化学后处理中所用液态金属介质的再生过程。研究了液态镉与陶瓷氮化颗粒在3LiCl-2KCl熔体中阳极溶解过程中形成的污泥的相互作用,以及通过过滤从单个金属裂变产物中提纯镉的可能性。阳极污泥以铂族、锆、钼和锝的裂变产物为代表。扫描电镜分析表明,该金属产物由多个共生相组成。研究发现,当模拟阳极污泥的多金属合金与熔体接触时,液态金属相在500℃下饱和至0.025 wt% Pd, 0.01 wt% Rh 50小时,而锆形成不溶的分散金属间化合物ZrCd3。钼和锝的粉末没有被镉浸湿,可以用P-200型的平纹编织滤网完全去除。也可以通过过滤从阳极镉中去除锆。钌和钯粉末的过滤效率分别不超过54.3%和13.1%,这是由于颗粒的部分溶解和变薄,这将导致液态金属相饱和,需要用其他方法纯化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SNF processing electrochemical operations: liquid-metal and salt medium purification
The paper investigates the process of regeneration of a liquid metal medium used in the pyroelectrochemical reprocessing of spent mixed uranium-plutonium nitride fuel produced by a fast neutron reactor. The investigation concerns the interaction of liquid cadmium with sludge formed during the anodic dissolution of ceramic nitride pellets in a 3LiCl-2KCl melt medium as well as the possibility of its purification by filtration from individual metal fission products. Anode sludge is represented by fission products of the platinum group, zirconium, molybdenum and technetium. It was determined by scanning electron microscopy that the metal product is composed of several intergrowth phases. It was found that upon contact of a polymetallic alloy simulating anode sludge with a melt, the liquid metal phase is saturated to 0.025 wt% of Pd, 0.01 wt% of Rh for 50 hours at 500 °C, while zirconium forms an insoluble dispersed intermetallic compound ZrCd3. Powders of molybdenum and technetium, which are not wetted with cadmium, can be completely removed using a filter mesh of plain weaving of the P-200 type. It is also possible to remove zirconium from anodic cadmium by filtration. The filtration efficiency of ruthenium and palladium powders did not exceed 54.3 and 13.1 wt%, respectively, due to partial dissolution and thinning of particles, which will lead to saturation of the liquid metal phase and the need to purify it by alternative methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信