{"title":"一种分层并行的最终模型检验方法","authors":"Yati Phyo, Moe Nandi Aung, Canh Minh Do, K. Ogata","doi":"10.3390/info14070384","DOIUrl":null,"url":null,"abstract":"Termination or halting is an important system requirement that many systems should satisfy and can be expressed in linear temporal logic as eventual properties. We devised a divide-and-conquer approach to eventual model checking in order to reduce the state space explosion in model checking. The idea of the technique is to split an original model checking problem for eventual properties into multiple smaller model checking problems and handle each smaller one. Due to the nature of the divide-and-conquer approach, each smaller model checking problem can essentially be tackled independently. Hence, this paper proposes a parallel technique/tool based on a master–worker pattern for the divide-and-conquer approach to model checking eventual properties. We carry out some experiments to show the effectiveness of our parallel technique/tool, which can somewhat enhance the running performance to a certain extent when conducting model checking for eventual properties.","PeriodicalId":13622,"journal":{"name":"Inf. Comput.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Layered and Parallelized Method of Eventual Model Checking\",\"authors\":\"Yati Phyo, Moe Nandi Aung, Canh Minh Do, K. Ogata\",\"doi\":\"10.3390/info14070384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Termination or halting is an important system requirement that many systems should satisfy and can be expressed in linear temporal logic as eventual properties. We devised a divide-and-conquer approach to eventual model checking in order to reduce the state space explosion in model checking. The idea of the technique is to split an original model checking problem for eventual properties into multiple smaller model checking problems and handle each smaller one. Due to the nature of the divide-and-conquer approach, each smaller model checking problem can essentially be tackled independently. Hence, this paper proposes a parallel technique/tool based on a master–worker pattern for the divide-and-conquer approach to model checking eventual properties. We carry out some experiments to show the effectiveness of our parallel technique/tool, which can somewhat enhance the running performance to a certain extent when conducting model checking for eventual properties.\",\"PeriodicalId\":13622,\"journal\":{\"name\":\"Inf. Comput.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inf. Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/info14070384\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inf. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/info14070384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Layered and Parallelized Method of Eventual Model Checking
Termination or halting is an important system requirement that many systems should satisfy and can be expressed in linear temporal logic as eventual properties. We devised a divide-and-conquer approach to eventual model checking in order to reduce the state space explosion in model checking. The idea of the technique is to split an original model checking problem for eventual properties into multiple smaller model checking problems and handle each smaller one. Due to the nature of the divide-and-conquer approach, each smaller model checking problem can essentially be tackled independently. Hence, this paper proposes a parallel technique/tool based on a master–worker pattern for the divide-and-conquer approach to model checking eventual properties. We carry out some experiments to show the effectiveness of our parallel technique/tool, which can somewhat enhance the running performance to a certain extent when conducting model checking for eventual properties.