{"title":"绿色合成纳米银纳米粒子使用(山羊奶)叶提取物","authors":"M. Khodaie, N. Ghasemi, M. Ramezani","doi":"10.33945/sami/ecc.2019.5.4","DOIUrl":null,"url":null,"abstract":"Biological synthesis of metallic nanoparticles is considered as a fast, eco-friendly, affordable and easily scalable technology. Also, the nanoparticles produced by plants are very stable. In this study, the focus is on the synthesis of silver nanoparticles using extract of eryngium campestre. The effective parameters such as concentration of silver nitrate, pH, temperature and time, size and morphology of the nanoparticles were investigated and controlled by (UV-Vis) spectroscopy in the range of 300-500 nm. Silver nanoparticles were synthesized under optimal conditions of 1 mM silver nitrate, pH=5, temperature= 50 °C and synthesis time of 100 minutes. Then, characterized by Fourier-transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), Scanning electron microscope (SEM), Energy dispersive X-ray (EDX) analysis.","PeriodicalId":11871,"journal":{"name":"Eurasian Chemical Communications","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Green synthesis of silver nanoparticles using (Eryngium Campestre) leaf extract\",\"authors\":\"M. Khodaie, N. Ghasemi, M. Ramezani\",\"doi\":\"10.33945/sami/ecc.2019.5.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biological synthesis of metallic nanoparticles is considered as a fast, eco-friendly, affordable and easily scalable technology. Also, the nanoparticles produced by plants are very stable. In this study, the focus is on the synthesis of silver nanoparticles using extract of eryngium campestre. The effective parameters such as concentration of silver nitrate, pH, temperature and time, size and morphology of the nanoparticles were investigated and controlled by (UV-Vis) spectroscopy in the range of 300-500 nm. Silver nanoparticles were synthesized under optimal conditions of 1 mM silver nitrate, pH=5, temperature= 50 °C and synthesis time of 100 minutes. Then, characterized by Fourier-transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), Scanning electron microscope (SEM), Energy dispersive X-ray (EDX) analysis.\",\"PeriodicalId\":11871,\"journal\":{\"name\":\"Eurasian Chemical Communications\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eurasian Chemical Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33945/sami/ecc.2019.5.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasian Chemical Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33945/sami/ecc.2019.5.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemistry","Score":null,"Total":0}
Green synthesis of silver nanoparticles using (Eryngium Campestre) leaf extract
Biological synthesis of metallic nanoparticles is considered as a fast, eco-friendly, affordable and easily scalable technology. Also, the nanoparticles produced by plants are very stable. In this study, the focus is on the synthesis of silver nanoparticles using extract of eryngium campestre. The effective parameters such as concentration of silver nitrate, pH, temperature and time, size and morphology of the nanoparticles were investigated and controlled by (UV-Vis) spectroscopy in the range of 300-500 nm. Silver nanoparticles were synthesized under optimal conditions of 1 mM silver nitrate, pH=5, temperature= 50 °C and synthesis time of 100 minutes. Then, characterized by Fourier-transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), Scanning electron microscope (SEM), Energy dispersive X-ray (EDX) analysis.