关于率1广义复正交设计的不存在性

Xue-Bin Liang, X. Xia
{"title":"关于率1广义复正交设计的不存在性","authors":"Xue-Bin Liang, X. Xia","doi":"10.1109/TIT.2003.818396","DOIUrl":null,"url":null,"abstract":"Orthogonal space-time block coding proposed recently by Alamouti (1998) and Tarokh et al. (1999) is a promising scheme for information transmission over Rayleigh-fading channels using multiple transmit antennas due to its favorable characteristics of having full transmit diversity and a decoupled maximum-likelihood (ML) decoding algorithm. Tarokh et al. extended the theory of classical orthogonal designs to the theory of generalized, real, or complex, linear processing orthogonal designs and then applied the theory of generalized orthogonal designs to construct space-time block codes (STBC) with the maximum possible diversity order while having a simple decoding algorithm for any given number of transmit and receive antennas. It has been known that the STBC constructed in this way can achieve the maximum possible rate of one for every number of transmit antennas using any arbitrary real constellation and for two transmit antennas using any arbitrary complex constellation. Contrary to this, in this correspondence we prove that there does not exist rate-one STBC from generalized complex linear processing orthogonal designs for more than two transmit antennas using any arbitrary complex constellation.","PeriodicalId":13250,"journal":{"name":"IEEE Trans. Inf. Theory","volume":"36 1","pages":"2984-2988"},"PeriodicalIF":0.0000,"publicationDate":"2003-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"106","resultStr":"{\"title\":\"On the nonexistence of rate-one generalized complex orthogonal designs\",\"authors\":\"Xue-Bin Liang, X. Xia\",\"doi\":\"10.1109/TIT.2003.818396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Orthogonal space-time block coding proposed recently by Alamouti (1998) and Tarokh et al. (1999) is a promising scheme for information transmission over Rayleigh-fading channels using multiple transmit antennas due to its favorable characteristics of having full transmit diversity and a decoupled maximum-likelihood (ML) decoding algorithm. Tarokh et al. extended the theory of classical orthogonal designs to the theory of generalized, real, or complex, linear processing orthogonal designs and then applied the theory of generalized orthogonal designs to construct space-time block codes (STBC) with the maximum possible diversity order while having a simple decoding algorithm for any given number of transmit and receive antennas. It has been known that the STBC constructed in this way can achieve the maximum possible rate of one for every number of transmit antennas using any arbitrary real constellation and for two transmit antennas using any arbitrary complex constellation. Contrary to this, in this correspondence we prove that there does not exist rate-one STBC from generalized complex linear processing orthogonal designs for more than two transmit antennas using any arbitrary complex constellation.\",\"PeriodicalId\":13250,\"journal\":{\"name\":\"IEEE Trans. Inf. Theory\",\"volume\":\"36 1\",\"pages\":\"2984-2988\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"106\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Trans. Inf. Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TIT.2003.818396\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Inf. Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TIT.2003.818396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 106

摘要

Alamouti(1998)和Tarokh等人(1999)最近提出的正交空时分组编码由于具有充分的发射分集和解耦的最大似然(ML)译码算法的有利特性,是一种利用多发射天线在瑞利衰落信道上进行信息传输的有前途的方案。Tarokh等人将经典正交设计理论扩展到广义的、实的或复的线性处理正交设计理论,然后应用广义正交设计理论构造具有最大可能分集顺序的空时分组码(STBC),同时对任意给定数量的发射和接收天线具有简单的解码算法。已知以这种方式构建的STBC可以实现任意实星座下每一个数发射天线的最大速率为1,任意复星座下两个发射天线的最大速率为1。与此相反,在本文通信中,我们证明了使用任意复杂星座的两个以上发射天线的广义复线性处理正交设计不存在率一STBC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the nonexistence of rate-one generalized complex orthogonal designs
Orthogonal space-time block coding proposed recently by Alamouti (1998) and Tarokh et al. (1999) is a promising scheme for information transmission over Rayleigh-fading channels using multiple transmit antennas due to its favorable characteristics of having full transmit diversity and a decoupled maximum-likelihood (ML) decoding algorithm. Tarokh et al. extended the theory of classical orthogonal designs to the theory of generalized, real, or complex, linear processing orthogonal designs and then applied the theory of generalized orthogonal designs to construct space-time block codes (STBC) with the maximum possible diversity order while having a simple decoding algorithm for any given number of transmit and receive antennas. It has been known that the STBC constructed in this way can achieve the maximum possible rate of one for every number of transmit antennas using any arbitrary real constellation and for two transmit antennas using any arbitrary complex constellation. Contrary to this, in this correspondence we prove that there does not exist rate-one STBC from generalized complex linear processing orthogonal designs for more than two transmit antennas using any arbitrary complex constellation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信