{"title":"用树索引的马尔可夫链的浓度","authors":"Christopher Shriver","doi":"10.1214/21-aihp1224","DOIUrl":null,"url":null,"abstract":"An inequality of Marton [Mar96] shows that the joint distribution of a Markov chain with uniformly contracting transition kernels exhibits concentration. We generalize this inequality to Markov chains indexed by trees.","PeriodicalId":42884,"journal":{"name":"Annales de l Institut Henri Poincare D","volume":"18 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Concentration of Markov chains indexed by trees\",\"authors\":\"Christopher Shriver\",\"doi\":\"10.1214/21-aihp1224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An inequality of Marton [Mar96] shows that the joint distribution of a Markov chain with uniformly contracting transition kernels exhibits concentration. We generalize this inequality to Markov chains indexed by trees.\",\"PeriodicalId\":42884,\"journal\":{\"name\":\"Annales de l Institut Henri Poincare D\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales de l Institut Henri Poincare D\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/21-aihp1224\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales de l Institut Henri Poincare D","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/21-aihp1224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
An inequality of Marton [Mar96] shows that the joint distribution of a Markov chain with uniformly contracting transition kernels exhibits concentration. We generalize this inequality to Markov chains indexed by trees.