图像匹配的极端特征区域

Baijiang Fan, Yunbo Rao, J. Pu, Jianhua Deng
{"title":"图像匹配的极端特征区域","authors":"Baijiang Fan, Yunbo Rao, J. Pu, Jianhua Deng","doi":"10.2312/PG.20181286","DOIUrl":null,"url":null,"abstract":"Extreme feature regions are increasingly critical for many image matching applications on affine image-pairs. In this paper, we focus on the time-consumption and accuracy of using extreme feature regions to do the affine-invariant image matching. Specifically, we proposed novel image matching algorithm using three types of critical points in Morse theory to calculate precise extreme feature regions. Furthermore, Random Sample Consensus (RANSAC) method is used to eliminate the features of complex background, and improve the accuracy of the extreme feature regions. Moreover, the saddle regions is used to calculate the covariance matrix for image matching. Extensive experiments on several benchmark image matching databases validate the superiority of the proposed approaches over many recently proposed affine-invariant SIFT algorithms. CCS Concepts •Computing methodologies → Image processing; image-matching; random sample consensus; affine invariant;","PeriodicalId":88304,"journal":{"name":"Proceedings. Pacific Conference on Computer Graphics and Applications","volume":"66 1","pages":"81-84"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extreme Feature Regions for Image Matching\",\"authors\":\"Baijiang Fan, Yunbo Rao, J. Pu, Jianhua Deng\",\"doi\":\"10.2312/PG.20181286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extreme feature regions are increasingly critical for many image matching applications on affine image-pairs. In this paper, we focus on the time-consumption and accuracy of using extreme feature regions to do the affine-invariant image matching. Specifically, we proposed novel image matching algorithm using three types of critical points in Morse theory to calculate precise extreme feature regions. Furthermore, Random Sample Consensus (RANSAC) method is used to eliminate the features of complex background, and improve the accuracy of the extreme feature regions. Moreover, the saddle regions is used to calculate the covariance matrix for image matching. Extensive experiments on several benchmark image matching databases validate the superiority of the proposed approaches over many recently proposed affine-invariant SIFT algorithms. CCS Concepts •Computing methodologies → Image processing; image-matching; random sample consensus; affine invariant;\",\"PeriodicalId\":88304,\"journal\":{\"name\":\"Proceedings. Pacific Conference on Computer Graphics and Applications\",\"volume\":\"66 1\",\"pages\":\"81-84\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Pacific Conference on Computer Graphics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2312/PG.20181286\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Pacific Conference on Computer Graphics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/PG.20181286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在许多仿射图像对的图像匹配应用中,极端特征区域越来越重要。本文主要研究了利用极值特征区域进行仿射不变图像匹配的耗时和精度问题。具体而言,我们提出了一种新的图像匹配算法,利用莫尔斯理论中的三种临界点来计算精确的极端特征区域。采用随机样本一致性(RANSAC)方法消除复杂背景的特征,提高极端特征区域的准确性。利用鞍区计算协方差矩阵进行图像匹配。在几个基准图像匹配数据库上的大量实验验证了所提出的方法优于许多最近提出的仿射不变SIFT算法。•计算方法→图像处理;影像匹配;随机样本一致性;仿射不变量;
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extreme Feature Regions for Image Matching
Extreme feature regions are increasingly critical for many image matching applications on affine image-pairs. In this paper, we focus on the time-consumption and accuracy of using extreme feature regions to do the affine-invariant image matching. Specifically, we proposed novel image matching algorithm using three types of critical points in Morse theory to calculate precise extreme feature regions. Furthermore, Random Sample Consensus (RANSAC) method is used to eliminate the features of complex background, and improve the accuracy of the extreme feature regions. Moreover, the saddle regions is used to calculate the covariance matrix for image matching. Extensive experiments on several benchmark image matching databases validate the superiority of the proposed approaches over many recently proposed affine-invariant SIFT algorithms. CCS Concepts •Computing methodologies → Image processing; image-matching; random sample consensus; affine invariant;
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信