分布式多模态数据流的低延迟推测推断

IF 0.7 Q4 TELECOMMUNICATIONS
Tianxing Li, Jin Huang, Erik Risinger, Deepak Ganesan
{"title":"分布式多模态数据流的低延迟推测推断","authors":"Tianxing Li, Jin Huang, Erik Risinger, Deepak Ganesan","doi":"10.1145/3568113.3568121","DOIUrl":null,"url":null,"abstract":"While multi-modal deep learning is useful in distributed sensing tasks like human tracking, activity recognition, and audio and video analysis, deploying state-of-the-art multi-modal models in a wirelessly networked sensor system poses unique challenges. The data sizes for different modalities can be highly asymmetric (e.g., video vs. audio), and these differences can lead to significant delays between streams in the presence of wireless dynamics. Therefore, a slow stream can significantly slow down a multimodal inference system in the cloud, leading to either increased latency (when blocked by the slow stream) or degradation in inference accuracy (if inference proceeds without waiting).","PeriodicalId":29918,"journal":{"name":"GetMobile-Mobile Computing & Communications Review","volume":"43 1","pages":"23 - 26"},"PeriodicalIF":0.7000,"publicationDate":"2022-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Low-Latency Speculative Inference on Distributed Multi-Modal Data Streams\",\"authors\":\"Tianxing Li, Jin Huang, Erik Risinger, Deepak Ganesan\",\"doi\":\"10.1145/3568113.3568121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While multi-modal deep learning is useful in distributed sensing tasks like human tracking, activity recognition, and audio and video analysis, deploying state-of-the-art multi-modal models in a wirelessly networked sensor system poses unique challenges. The data sizes for different modalities can be highly asymmetric (e.g., video vs. audio), and these differences can lead to significant delays between streams in the presence of wireless dynamics. Therefore, a slow stream can significantly slow down a multimodal inference system in the cloud, leading to either increased latency (when blocked by the slow stream) or degradation in inference accuracy (if inference proceeds without waiting).\",\"PeriodicalId\":29918,\"journal\":{\"name\":\"GetMobile-Mobile Computing & Communications Review\",\"volume\":\"43 1\",\"pages\":\"23 - 26\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GetMobile-Mobile Computing & Communications Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3568113.3568121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GetMobile-Mobile Computing & Communications Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3568113.3568121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 13

摘要

虽然多模态深度学习在人体跟踪、活动识别、音频和视频分析等分布式传感任务中很有用,但在无线网络传感器系统中部署最先进的多模态模型带来了独特的挑战。不同模式的数据大小可能是高度不对称的(例如,视频与音频),这些差异可能导致存在无线动态的流之间的显著延迟。因此,慢流会显著降低云中的多模态推理系统的速度,导致延迟增加(当被慢流阻塞时)或推理精度降低(如果推理不等待就进行)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-Latency Speculative Inference on Distributed Multi-Modal Data Streams
While multi-modal deep learning is useful in distributed sensing tasks like human tracking, activity recognition, and audio and video analysis, deploying state-of-the-art multi-modal models in a wirelessly networked sensor system poses unique challenges. The data sizes for different modalities can be highly asymmetric (e.g., video vs. audio), and these differences can lead to significant delays between streams in the presence of wireless dynamics. Therefore, a slow stream can significantly slow down a multimodal inference system in the cloud, leading to either increased latency (when blocked by the slow stream) or degradation in inference accuracy (if inference proceeds without waiting).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
34
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信