Shaoqiang Chang, Fawei Yang, Zhennan Liang, Wei Ren, H. Zhang, Quanhua Liu
{"title":"利用脉冲敏捷相位编码进行距离模糊缓解的慢时MIMO波形设计","authors":"Shaoqiang Chang, Fawei Yang, Zhennan Liang, Wei Ren, H. Zhang, Quanhua Liu","doi":"10.3390/rs15133395","DOIUrl":null,"url":null,"abstract":"This paper proposed a Pulse-Agile-Phase-Coding slow-time MIMO (PAPC-st-MIMO) waveform, where the phase-coded signal is utilized as the intra-pulse modulation of the slow-time MIMO waveform. Firstly, the signal model of the proposed waveform is derived. To improve the orthogonality of the phase-coded waveform sets, a novel hybrid evolutionary algorithm based on Cyclic Algorithm New (CAN) is proposed. After the optimization process of the phase-coded waveform sets, the signal processing method of the PAPC-st-MIMO waveform is derived. Finally, the effectiveness of the proposed method is verified with a simulation experiment. The mitigation ratio of the near-range detection waveform can achieve −30 dB, while the long-range detection waveform can achieve −35 dB. This approach ensures waveform orthogonality while enabling the slow-time MIMO waveform to achieve distance selectivity. By conducting joint pulse-Doppler processing across multiple range segments, range ambiguity can be suppressed, increasing the system’s Pulse Repetition Frequency (PRF) without introducing ambiguity.","PeriodicalId":20944,"journal":{"name":"Remote. Sens.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Slow-Time MIMO Waveform Design Using Pulse-Agile-Phase-Coding for Range Ambiguity Mitigation\",\"authors\":\"Shaoqiang Chang, Fawei Yang, Zhennan Liang, Wei Ren, H. Zhang, Quanhua Liu\",\"doi\":\"10.3390/rs15133395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposed a Pulse-Agile-Phase-Coding slow-time MIMO (PAPC-st-MIMO) waveform, where the phase-coded signal is utilized as the intra-pulse modulation of the slow-time MIMO waveform. Firstly, the signal model of the proposed waveform is derived. To improve the orthogonality of the phase-coded waveform sets, a novel hybrid evolutionary algorithm based on Cyclic Algorithm New (CAN) is proposed. After the optimization process of the phase-coded waveform sets, the signal processing method of the PAPC-st-MIMO waveform is derived. Finally, the effectiveness of the proposed method is verified with a simulation experiment. The mitigation ratio of the near-range detection waveform can achieve −30 dB, while the long-range detection waveform can achieve −35 dB. This approach ensures waveform orthogonality while enabling the slow-time MIMO waveform to achieve distance selectivity. By conducting joint pulse-Doppler processing across multiple range segments, range ambiguity can be suppressed, increasing the system’s Pulse Repetition Frequency (PRF) without introducing ambiguity.\",\"PeriodicalId\":20944,\"journal\":{\"name\":\"Remote. Sens.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote. Sens.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/rs15133395\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote. Sens.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/rs15133395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Slow-Time MIMO Waveform Design Using Pulse-Agile-Phase-Coding for Range Ambiguity Mitigation
This paper proposed a Pulse-Agile-Phase-Coding slow-time MIMO (PAPC-st-MIMO) waveform, where the phase-coded signal is utilized as the intra-pulse modulation of the slow-time MIMO waveform. Firstly, the signal model of the proposed waveform is derived. To improve the orthogonality of the phase-coded waveform sets, a novel hybrid evolutionary algorithm based on Cyclic Algorithm New (CAN) is proposed. After the optimization process of the phase-coded waveform sets, the signal processing method of the PAPC-st-MIMO waveform is derived. Finally, the effectiveness of the proposed method is verified with a simulation experiment. The mitigation ratio of the near-range detection waveform can achieve −30 dB, while the long-range detection waveform can achieve −35 dB. This approach ensures waveform orthogonality while enabling the slow-time MIMO waveform to achieve distance selectivity. By conducting joint pulse-Doppler processing across multiple range segments, range ambiguity can be suppressed, increasing the system’s Pulse Repetition Frequency (PRF) without introducing ambiguity.