通过散度定理用曲面积分逼近体积积分

Q4 Mathematics
S. Dragomir
{"title":"通过散度定理用曲面积分逼近体积积分","authors":"S. Dragomir","doi":"10.4064/am2393-1-2020","DOIUrl":null,"url":null,"abstract":". In this paper, by utilising the famous Divergence Theorem for n - dimensional integral, we provide some error estimates in approximating the integral on a body B; a bounded closed subset of R n ( n (cid:21) 2) with smooth (or piecewise smooth) boundary @B; by an integral on the surface @B and some other simple terms. Some examples for 3 -dimensional case are also given.","PeriodicalId":52313,"journal":{"name":"Applicationes Mathematicae","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximating the volume integral by a surface integral via the divergence theorem\",\"authors\":\"S. Dragomir\",\"doi\":\"10.4064/am2393-1-2020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper, by utilising the famous Divergence Theorem for n - dimensional integral, we provide some error estimates in approximating the integral on a body B; a bounded closed subset of R n ( n (cid:21) 2) with smooth (or piecewise smooth) boundary @B; by an integral on the surface @B and some other simple terms. Some examples for 3 -dimensional case are also given.\",\"PeriodicalId\":52313,\"journal\":{\"name\":\"Applicationes Mathematicae\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applicationes Mathematicae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4064/am2393-1-2020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applicationes Mathematicae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4064/am2393-1-2020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

. 本文利用著名的n维积分散度定理,给出了在物体B上逼近积分时的一些误差估计;rn (n (cid:21) 2)具有光滑(或分段光滑)边界@B的有界闭子集;通过曲面上的积分和其他一些简单的项。文中还给出了三维情况下的一些例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximating the volume integral by a surface integral via the divergence theorem
. In this paper, by utilising the famous Divergence Theorem for n - dimensional integral, we provide some error estimates in approximating the integral on a body B; a bounded closed subset of R n ( n (cid:21) 2) with smooth (or piecewise smooth) boundary @B; by an integral on the surface @B and some other simple terms. Some examples for 3 -dimensional case are also given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applicationes Mathematicae
Applicationes Mathematicae Mathematics-Applied Mathematics
CiteScore
0.30
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信