维数为1的紧连通阿贝尔群

Wayne Lewis, A. Mader
{"title":"维数为1的紧连通阿贝尔群","authors":"Wayne Lewis, A. Mader","doi":"10.4171/RSMUP/85","DOIUrl":null,"url":null,"abstract":"The compact connected abelian groups of dimension 1 are represented and classified in an efficient and explicit way. Main tools are Pontryagin Duality and the Resolution Theorem for compact abelian groups. Mathematics Subject Classification (2010). Primary: 22C05; Secondary: 20K15, 22B05","PeriodicalId":20997,"journal":{"name":"Rendiconti del Seminario Matematico della Università di Padova","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Compact connected abelian groups of dimension 1\",\"authors\":\"Wayne Lewis, A. Mader\",\"doi\":\"10.4171/RSMUP/85\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The compact connected abelian groups of dimension 1 are represented and classified in an efficient and explicit way. Main tools are Pontryagin Duality and the Resolution Theorem for compact abelian groups. Mathematics Subject Classification (2010). Primary: 22C05; Secondary: 20K15, 22B05\",\"PeriodicalId\":20997,\"journal\":{\"name\":\"Rendiconti del Seminario Matematico della Università di Padova\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rendiconti del Seminario Matematico della Università di Padova\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/RSMUP/85\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rendiconti del Seminario Matematico della Università di Padova","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/RSMUP/85","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

对维数为1的紧连通阿贝尔群进行了有效而明确的表示和分类。主要的工具是紧阿贝尔群的庞特里亚金对偶和分解定理。数学学科分类(2010)。主:22 c05;次级:20K15、22B05
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compact connected abelian groups of dimension 1
The compact connected abelian groups of dimension 1 are represented and classified in an efficient and explicit way. Main tools are Pontryagin Duality and the Resolution Theorem for compact abelian groups. Mathematics Subject Classification (2010). Primary: 22C05; Secondary: 20K15, 22B05
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信