{"title":"维数为1的紧连通阿贝尔群","authors":"Wayne Lewis, A. Mader","doi":"10.4171/RSMUP/85","DOIUrl":null,"url":null,"abstract":"The compact connected abelian groups of dimension 1 are represented and classified in an efficient and explicit way. Main tools are Pontryagin Duality and the Resolution Theorem for compact abelian groups. Mathematics Subject Classification (2010). Primary: 22C05; Secondary: 20K15, 22B05","PeriodicalId":20997,"journal":{"name":"Rendiconti del Seminario Matematico della Università di Padova","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Compact connected abelian groups of dimension 1\",\"authors\":\"Wayne Lewis, A. Mader\",\"doi\":\"10.4171/RSMUP/85\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The compact connected abelian groups of dimension 1 are represented and classified in an efficient and explicit way. Main tools are Pontryagin Duality and the Resolution Theorem for compact abelian groups. Mathematics Subject Classification (2010). Primary: 22C05; Secondary: 20K15, 22B05\",\"PeriodicalId\":20997,\"journal\":{\"name\":\"Rendiconti del Seminario Matematico della Università di Padova\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rendiconti del Seminario Matematico della Università di Padova\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/RSMUP/85\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rendiconti del Seminario Matematico della Università di Padova","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/RSMUP/85","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The compact connected abelian groups of dimension 1 are represented and classified in an efficient and explicit way. Main tools are Pontryagin Duality and the Resolution Theorem for compact abelian groups. Mathematics Subject Classification (2010). Primary: 22C05; Secondary: 20K15, 22B05