一类负系数亚纯凸函数

H. Srivastava, H. M. Hossen, M. Aouf
{"title":"一类负系数亚纯凸函数","authors":"H. Srivastava, H. M. Hossen, M. Aouf","doi":"10.5036/MJIU.30.33","DOIUrl":null,"url":null,"abstract":"In this paper we obtain coefficient inequalities, and distortion and closure theorems, for the class Λk(α, β, A, B) of meromorphically convex functions with negative coefficients, which we introduce here. We also obtain the class-preserving integral operator of the form:F(z)=c∫10ucf(uz)du (c>0)for the class Λk(α, β, A, B). Conversely, when the image function F(z)∈ Λk(α, β, A, B), we find the radius of convexity of the original function f(z). Several interesting results involving the modified Hadamard product of functions belonging to the class Λk(α, β, A, B) are also derived.","PeriodicalId":18362,"journal":{"name":"Mathematical Journal of Ibaraki University","volume":"11 1","pages":"33-51"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"A Certain Subclass of Meromorphically Convex Functions with Negative Coefficients\",\"authors\":\"H. Srivastava, H. M. Hossen, M. Aouf\",\"doi\":\"10.5036/MJIU.30.33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we obtain coefficient inequalities, and distortion and closure theorems, for the class Λk(α, β, A, B) of meromorphically convex functions with negative coefficients, which we introduce here. We also obtain the class-preserving integral operator of the form:F(z)=c∫10ucf(uz)du (c>0)for the class Λk(α, β, A, B). Conversely, when the image function F(z)∈ Λk(α, β, A, B), we find the radius of convexity of the original function f(z). Several interesting results involving the modified Hadamard product of functions belonging to the class Λk(α, β, A, B) are also derived.\",\"PeriodicalId\":18362,\"journal\":{\"name\":\"Mathematical Journal of Ibaraki University\",\"volume\":\"11 1\",\"pages\":\"33-51\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Journal of Ibaraki University\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5036/MJIU.30.33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Journal of Ibaraki University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5036/MJIU.30.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

本文给出了一类带负系数的亚纯凸函数Λk(α, β, A, B)的系数不等式,畸变定理和闭包定理。对于类Λk(α, β, A, B),我们得到了保类积分算子F(z)=c∫10ucf(uz)du (c>0)。相反,当图像函数F(z)∈Λk(α, β, A, B)时,我们得到了原函数F(z)的凸半径。本文还推导了几个有趣的结果,涉及到Λk(α, β, A, B)类函数的修正Hadamard积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Certain Subclass of Meromorphically Convex Functions with Negative Coefficients
In this paper we obtain coefficient inequalities, and distortion and closure theorems, for the class Λk(α, β, A, B) of meromorphically convex functions with negative coefficients, which we introduce here. We also obtain the class-preserving integral operator of the form:F(z)=c∫10ucf(uz)du (c>0)for the class Λk(α, β, A, B). Conversely, when the image function F(z)∈ Λk(α, β, A, B), we find the radius of convexity of the original function f(z). Several interesting results involving the modified Hadamard product of functions belonging to the class Λk(α, β, A, B) are also derived.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信