{"title":"三类布尔函数二阶非线性的下界","authors":"Qian Liu","doi":"10.3934/AMC.2020136","DOIUrl":null,"url":null,"abstract":"In this paper, by calculating the lower bounds on the nonlinearity of the derivatives of the following three classes of Boolean functions, we provide the tight lower bounds on the second-order nonlinearity of these Boolean functions: (1) \\begin{document}$ f_1(x) = Tr_1^n(x^{2^{r+1}+2^r+1}) $\\end{document} , where \\begin{document}$ n = 2r+2 $\\end{document} with even \\begin{document}$ r $\\end{document} ; (2) \\begin{document}$ f_2(x) = Tr_1^n(\\lambda x^{2^{2r}+2^{r+1}+1}) $\\end{document} , where \\begin{document}$ \\lambda \\in \\mathbb{F}_{2^r}^* $\\end{document} and \\begin{document}$ n = 4r $\\end{document} with even \\begin{document}$ r $\\end{document} ; (3) \\begin{document}$ f_3(x,y) = yTr_1^n(x^{2^r+1})+Tr_1^n(x^{2^r+3}) $\\end{document} , where \\begin{document}$ (x, y)\\in \\mathbb{F}_{2^n}\\times \\mathbb{F}_2 $\\end{document} , \\begin{document}$ n = 2r $\\end{document} with odd \\begin{document}$ r $\\end{document} . The results show that our bounds are better than previously known lower bounds in some cases.","PeriodicalId":50859,"journal":{"name":"Advances in Mathematics of Communications","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The lower bounds on the second-order nonlinearity of three classes of Boolean functions\",\"authors\":\"Qian Liu\",\"doi\":\"10.3934/AMC.2020136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, by calculating the lower bounds on the nonlinearity of the derivatives of the following three classes of Boolean functions, we provide the tight lower bounds on the second-order nonlinearity of these Boolean functions: (1) \\\\begin{document}$ f_1(x) = Tr_1^n(x^{2^{r+1}+2^r+1}) $\\\\end{document} , where \\\\begin{document}$ n = 2r+2 $\\\\end{document} with even \\\\begin{document}$ r $\\\\end{document} ; (2) \\\\begin{document}$ f_2(x) = Tr_1^n(\\\\lambda x^{2^{2r}+2^{r+1}+1}) $\\\\end{document} , where \\\\begin{document}$ \\\\lambda \\\\in \\\\mathbb{F}_{2^r}^* $\\\\end{document} and \\\\begin{document}$ n = 4r $\\\\end{document} with even \\\\begin{document}$ r $\\\\end{document} ; (3) \\\\begin{document}$ f_3(x,y) = yTr_1^n(x^{2^r+1})+Tr_1^n(x^{2^r+3}) $\\\\end{document} , where \\\\begin{document}$ (x, y)\\\\in \\\\mathbb{F}_{2^n}\\\\times \\\\mathbb{F}_2 $\\\\end{document} , \\\\begin{document}$ n = 2r $\\\\end{document} with odd \\\\begin{document}$ r $\\\\end{document} . The results show that our bounds are better than previously known lower bounds in some cases.\",\"PeriodicalId\":50859,\"journal\":{\"name\":\"Advances in Mathematics of Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics of Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3934/AMC.2020136\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics of Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3934/AMC.2020136","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 2
摘要
In this paper, by calculating the lower bounds on the nonlinearity of the derivatives of the following three classes of Boolean functions, we provide the tight lower bounds on the second-order nonlinearity of these Boolean functions: (1) \begin{document}$ f_1(x) = Tr_1^n(x^{2^{r+1}+2^r+1}) $\end{document} , where \begin{document}$ n = 2r+2 $\end{document} with even \begin{document}$ r $\end{document} ; (2) \begin{document}$ f_2(x) = Tr_1^n(\lambda x^{2^{2r}+2^{r+1}+1}) $\end{document} , where \begin{document}$ \lambda \in \mathbb{F}_{2^r}^* $\end{document} and \begin{document}$ n = 4r $\end{document} with even \begin{document}$ r $\end{document} ; (3) \begin{document}$ f_3(x,y) = yTr_1^n(x^{2^r+1})+Tr_1^n(x^{2^r+3}) $\end{document} , where \begin{document}$ (x, y)\in \mathbb{F}_{2^n}\times \mathbb{F}_2 $\end{document} , \begin{document}$ n = 2r $\end{document} with odd \begin{document}$ r $\end{document} . The results show that our bounds are better than previously known lower bounds in some cases.
The lower bounds on the second-order nonlinearity of three classes of Boolean functions
In this paper, by calculating the lower bounds on the nonlinearity of the derivatives of the following three classes of Boolean functions, we provide the tight lower bounds on the second-order nonlinearity of these Boolean functions: (1) \begin{document}$ f_1(x) = Tr_1^n(x^{2^{r+1}+2^r+1}) $\end{document} , where \begin{document}$ n = 2r+2 $\end{document} with even \begin{document}$ r $\end{document} ; (2) \begin{document}$ f_2(x) = Tr_1^n(\lambda x^{2^{2r}+2^{r+1}+1}) $\end{document} , where \begin{document}$ \lambda \in \mathbb{F}_{2^r}^* $\end{document} and \begin{document}$ n = 4r $\end{document} with even \begin{document}$ r $\end{document} ; (3) \begin{document}$ f_3(x,y) = yTr_1^n(x^{2^r+1})+Tr_1^n(x^{2^r+3}) $\end{document} , where \begin{document}$ (x, y)\in \mathbb{F}_{2^n}\times \mathbb{F}_2 $\end{document} , \begin{document}$ n = 2r $\end{document} with odd \begin{document}$ r $\end{document} . The results show that our bounds are better than previously known lower bounds in some cases.
期刊介绍:
Advances in Mathematics of Communications (AMC) publishes original research papers of the highest quality in all areas of mathematics and computer science which are relevant to applications in communications technology. For this reason, submissions from many areas of mathematics are invited, provided these show a high level of originality, new techniques, an innovative approach, novel methodologies, or otherwise a high level of depth and sophistication. Any work that does not conform to these standards will be rejected.
Areas covered include coding theory, cryptology, combinatorics, finite geometry, algebra and number theory, but are not restricted to these. This journal also aims to cover the algorithmic and computational aspects of these disciplines. Hence, all mathematics and computer science contributions of appropriate depth and relevance to the above mentioned applications in communications technology are welcome.
More detailed indication of the journal''s scope is given by the subject interests of the members of the board of editors.