充满激情的语义模糊

Rohan Padhye, Caroline Lemieux, Koushik Sen, Mike Papadakis, Yves Le Traon
{"title":"充满激情的语义模糊","authors":"Rohan Padhye, Caroline Lemieux, Koushik Sen, Mike Papadakis, Yves Le Traon","doi":"10.1145/3293882.3330576","DOIUrl":null,"url":null,"abstract":"Programs expecting structured inputs often consist of both a syntactic analysis stage, which parses raw input, and a semantic analysis stage, which conducts checks on the parsed input and executes the core logic of the program. Generator-based testing tools in the lineage of QuickCheck are a promising way to generate random syntactically valid test inputs for these programs. We present Zest, a technique which automatically guides QuickCheck-like random input generators to better explore the semantic analysis stage of test programs. Zest converts random-input generators into deterministic parametric input generators. We present the key insight that mutations in the untyped parameter domain map to structural mutations in the input domain. Zest leverages program feedback in the form of code coverage and input validity to perform feedback-directed parameter search. We evaluate Zest against AFL and QuickCheck on five Java programs: Maven, Ant, BCEL, Closure, and Rhino. Zest covers 1.03x-2.81x as many branches within the benchmarks' semantic analysis stages as baseline techniques. Further, we find 10 new bugs in the semantic analysis stages of these benchmarks. Zest is the most effective technique in finding these bugs reliably and quickly, requiring at most 10 minutes on average to find each bug.","PeriodicalId":20624,"journal":{"name":"Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"127","resultStr":"{\"title\":\"Semantic fuzzing with zest\",\"authors\":\"Rohan Padhye, Caroline Lemieux, Koushik Sen, Mike Papadakis, Yves Le Traon\",\"doi\":\"10.1145/3293882.3330576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Programs expecting structured inputs often consist of both a syntactic analysis stage, which parses raw input, and a semantic analysis stage, which conducts checks on the parsed input and executes the core logic of the program. Generator-based testing tools in the lineage of QuickCheck are a promising way to generate random syntactically valid test inputs for these programs. We present Zest, a technique which automatically guides QuickCheck-like random input generators to better explore the semantic analysis stage of test programs. Zest converts random-input generators into deterministic parametric input generators. We present the key insight that mutations in the untyped parameter domain map to structural mutations in the input domain. Zest leverages program feedback in the form of code coverage and input validity to perform feedback-directed parameter search. We evaluate Zest against AFL and QuickCheck on five Java programs: Maven, Ant, BCEL, Closure, and Rhino. Zest covers 1.03x-2.81x as many branches within the benchmarks' semantic analysis stages as baseline techniques. Further, we find 10 new bugs in the semantic analysis stages of these benchmarks. Zest is the most effective technique in finding these bugs reliably and quickly, requiring at most 10 minutes on average to find each bug.\",\"PeriodicalId\":20624,\"journal\":{\"name\":\"Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"127\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3293882.3330576\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3293882.3330576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 127

摘要

期望结构化输入的程序通常包括语法分析阶段(解析原始输入)和语义分析阶段(对解析后的输入进行检查并执行程序的核心逻辑)。QuickCheck系列中基于生成器的测试工具是为这些程序生成随机语法上有效的测试输入的一种很有前途的方法。我们提出了Zest,一种自动引导类似quickcheck的随机输入生成器来更好地探索测试程序的语义分析阶段的技术。Zest将随机输入生成器转换为确定性参数输入生成器。我们提出了关键的见解,即未类型化参数域的突变映射到输入域的结构突变。Zest利用代码覆盖率和输入有效性形式的程序反馈来执行反馈导向的参数搜索。我们将Zest与AFL和QuickCheck在五个Java程序上进行了比较:Maven、Ant、BCEL、Closure和Rhino。Zest在基准测试的语义分析阶段涵盖的分支是基线技术的1.03 -2.81倍。此外,我们在这些基准测试的语义分析阶段发现了10个新bug。Zest是可靠而快速地找到这些bug的最有效的技术,平均最多需要10分钟来找到每个bug。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semantic fuzzing with zest
Programs expecting structured inputs often consist of both a syntactic analysis stage, which parses raw input, and a semantic analysis stage, which conducts checks on the parsed input and executes the core logic of the program. Generator-based testing tools in the lineage of QuickCheck are a promising way to generate random syntactically valid test inputs for these programs. We present Zest, a technique which automatically guides QuickCheck-like random input generators to better explore the semantic analysis stage of test programs. Zest converts random-input generators into deterministic parametric input generators. We present the key insight that mutations in the untyped parameter domain map to structural mutations in the input domain. Zest leverages program feedback in the form of code coverage and input validity to perform feedback-directed parameter search. We evaluate Zest against AFL and QuickCheck on five Java programs: Maven, Ant, BCEL, Closure, and Rhino. Zest covers 1.03x-2.81x as many branches within the benchmarks' semantic analysis stages as baseline techniques. Further, we find 10 new bugs in the semantic analysis stages of these benchmarks. Zest is the most effective technique in finding these bugs reliably and quickly, requiring at most 10 minutes on average to find each bug.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信