利用多模态变分自编码器联合生成心电图和心脏解剖模型

M. Beetz, Abhirup Banerjee, Yuling Sang, V. Grau
{"title":"利用多模态变分自编码器联合生成心电图和心脏解剖模型","authors":"M. Beetz, Abhirup Banerjee, Yuling Sang, V. Grau","doi":"10.1109/ISBI52829.2022.9761590","DOIUrl":null,"url":null,"abstract":"Understanding population-wide variability of the human heart is crucial to detect abnormalities and improve the assessment of both cardiac anatomy and function. While many computational modeling approaches have been developed to capture this variability separately for either cardiac anatomy or physiology, their complex interconnections have rarely been explored together. In this work, we propose a novel multi-modal variational autoencoder (VAE) capable of processing combined physiology and bitemporal anatomy information in the form of electrocardiograms (ECG) and 3D biventricular point clouds. Our method achieves high reconstruction accuracy on a UK Biobank dataset with Chamfer distances between predicted and input anatomies below the underlying image resolution and the ECG reconstructions outperforming a state-of-the-art benchmark approach specialized in ECG generation. We also evaluate its generative ability and find comparable populations of generated and gold standard anatomies, ECGs, and combined anatomy-ECG data in terms of common clinical metrics and maximum mean discrepancies.","PeriodicalId":6827,"journal":{"name":"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)","volume":"1 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Combined Generation of Electrocardiogram and Cardiac Anatomy Models Using Multi-Modal Variational Autoencoders\",\"authors\":\"M. Beetz, Abhirup Banerjee, Yuling Sang, V. Grau\",\"doi\":\"10.1109/ISBI52829.2022.9761590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding population-wide variability of the human heart is crucial to detect abnormalities and improve the assessment of both cardiac anatomy and function. While many computational modeling approaches have been developed to capture this variability separately for either cardiac anatomy or physiology, their complex interconnections have rarely been explored together. In this work, we propose a novel multi-modal variational autoencoder (VAE) capable of processing combined physiology and bitemporal anatomy information in the form of electrocardiograms (ECG) and 3D biventricular point clouds. Our method achieves high reconstruction accuracy on a UK Biobank dataset with Chamfer distances between predicted and input anatomies below the underlying image resolution and the ECG reconstructions outperforming a state-of-the-art benchmark approach specialized in ECG generation. We also evaluate its generative ability and find comparable populations of generated and gold standard anatomies, ECGs, and combined anatomy-ECG data in terms of common clinical metrics and maximum mean discrepancies.\",\"PeriodicalId\":6827,\"journal\":{\"name\":\"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)\",\"volume\":\"1 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI52829.2022.9761590\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI52829.2022.9761590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

了解人群范围内的人类心脏变异性对于检测异常和改善心脏解剖和功能的评估至关重要。虽然已经开发了许多计算建模方法来分别捕获心脏解剖学或生理学的这种变异性,但它们之间复杂的相互联系很少被一起探索。在这项工作中,我们提出了一种新的多模态变分自编码器(VAE),能够以心电图(ECG)和三维双心室点云的形式处理生理和双颞解剖信息。我们的方法在英国生物银行数据集上实现了高重建精度,预测和输入解剖结构之间的切角距离低于底层图像分辨率,并且ECG重建优于专门用于ECG生成的最先进的基准方法。我们还评估了其生成能力,并在常见临床指标和最大平均差异方面找到了可比较的生成和金标准解剖、心电图和结合解剖-心电图数据的人群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combined Generation of Electrocardiogram and Cardiac Anatomy Models Using Multi-Modal Variational Autoencoders
Understanding population-wide variability of the human heart is crucial to detect abnormalities and improve the assessment of both cardiac anatomy and function. While many computational modeling approaches have been developed to capture this variability separately for either cardiac anatomy or physiology, their complex interconnections have rarely been explored together. In this work, we propose a novel multi-modal variational autoencoder (VAE) capable of processing combined physiology and bitemporal anatomy information in the form of electrocardiograms (ECG) and 3D biventricular point clouds. Our method achieves high reconstruction accuracy on a UK Biobank dataset with Chamfer distances between predicted and input anatomies below the underlying image resolution and the ECG reconstructions outperforming a state-of-the-art benchmark approach specialized in ECG generation. We also evaluate its generative ability and find comparable populations of generated and gold standard anatomies, ECGs, and combined anatomy-ECG data in terms of common clinical metrics and maximum mean discrepancies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信