{"title":"具有最坏更新时间的动态生成森林:自适应,拉斯维加斯和O(n1/2 - ε)时间","authors":"Danupon Nanongkai, Thatchaphol Saranurak","doi":"10.1145/3055399.3055447","DOIUrl":null,"url":null,"abstract":"We present two algorithms for dynamically maintaining a spanning forest of a graph undergoing edge insertions and deletions. Our algorithms guarantee worst-case update time and work against an adaptive adversary, meaning that an edge update can depend on previous outputs of the algorithms. We provide the first polynomial improvement over the long-standing O(√n) bound of [Frederickson STOC'84, Eppstein, Galil, Italiano and Nissenzweig FOCS'92] for such type of algorithms. The previously best improvement was O(√n (loglogn)2/logn) [Kejlberg-Rasmussen, Kopelowitz, Pettie and Thorup ESA'16]. We note however that these bounds were obtained by deterministic algorithms while our algorithms are randomized. Our first algorithm is Monte Carlo and guarantees an O(n0.4+o(1)) worst-case update time, where the o(1) term hides the O(√loglogn/logn) factor. Our second algorithm is Las Vegas and guarantee an O(n0.49306) worst-case update time with high probability. Algorithms with better update time either needed to assume that the adversary is oblivious (e.g. [Kapron, King and Mountjoy SODA'13]) or can only guarantee an amortized update time. Our second result answers an open problem by Kapron et al. To the best of our knowledge, our algorithms are among a few non-trivial randomized dynamic algorithms that work against adaptive adversaries. The key to our results is a decomposition of graphs into subgraphs that either have high expansion or sparse. This decomposition serves as an interface between recent developments on (static) flow computation and many old ideas in dynamic graph algorithms: On the one hand, we can combine previous dynamic graph techniques to get faster dynamic spanning forest algorithms if such decomposition is given. On the other hand, we can adapt flow-related techniques (e.g. those from [Khandekar, Rao and Vazirani STOC'06], [Peng SODA'16], and [Orecchia and Zhu SODA'14]) to maintain such decomposition. To the best of our knowledge, this is the first time these flow techniques are used in fully dynamic graph algorithms.","PeriodicalId":20615,"journal":{"name":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","volume":"99 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"91","resultStr":"{\"title\":\"Dynamic spanning forest with worst-case update time: adaptive, Las Vegas, and O(n1/2 - ε)-time\",\"authors\":\"Danupon Nanongkai, Thatchaphol Saranurak\",\"doi\":\"10.1145/3055399.3055447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present two algorithms for dynamically maintaining a spanning forest of a graph undergoing edge insertions and deletions. Our algorithms guarantee worst-case update time and work against an adaptive adversary, meaning that an edge update can depend on previous outputs of the algorithms. We provide the first polynomial improvement over the long-standing O(√n) bound of [Frederickson STOC'84, Eppstein, Galil, Italiano and Nissenzweig FOCS'92] for such type of algorithms. The previously best improvement was O(√n (loglogn)2/logn) [Kejlberg-Rasmussen, Kopelowitz, Pettie and Thorup ESA'16]. We note however that these bounds were obtained by deterministic algorithms while our algorithms are randomized. Our first algorithm is Monte Carlo and guarantees an O(n0.4+o(1)) worst-case update time, where the o(1) term hides the O(√loglogn/logn) factor. Our second algorithm is Las Vegas and guarantee an O(n0.49306) worst-case update time with high probability. Algorithms with better update time either needed to assume that the adversary is oblivious (e.g. [Kapron, King and Mountjoy SODA'13]) or can only guarantee an amortized update time. Our second result answers an open problem by Kapron et al. To the best of our knowledge, our algorithms are among a few non-trivial randomized dynamic algorithms that work against adaptive adversaries. The key to our results is a decomposition of graphs into subgraphs that either have high expansion or sparse. This decomposition serves as an interface between recent developments on (static) flow computation and many old ideas in dynamic graph algorithms: On the one hand, we can combine previous dynamic graph techniques to get faster dynamic spanning forest algorithms if such decomposition is given. On the other hand, we can adapt flow-related techniques (e.g. those from [Khandekar, Rao and Vazirani STOC'06], [Peng SODA'16], and [Orecchia and Zhu SODA'14]) to maintain such decomposition. To the best of our knowledge, this is the first time these flow techniques are used in fully dynamic graph algorithms.\",\"PeriodicalId\":20615,\"journal\":{\"name\":\"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing\",\"volume\":\"99 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"91\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3055399.3055447\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3055399.3055447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dynamic spanning forest with worst-case update time: adaptive, Las Vegas, and O(n1/2 - ε)-time
We present two algorithms for dynamically maintaining a spanning forest of a graph undergoing edge insertions and deletions. Our algorithms guarantee worst-case update time and work against an adaptive adversary, meaning that an edge update can depend on previous outputs of the algorithms. We provide the first polynomial improvement over the long-standing O(√n) bound of [Frederickson STOC'84, Eppstein, Galil, Italiano and Nissenzweig FOCS'92] for such type of algorithms. The previously best improvement was O(√n (loglogn)2/logn) [Kejlberg-Rasmussen, Kopelowitz, Pettie and Thorup ESA'16]. We note however that these bounds were obtained by deterministic algorithms while our algorithms are randomized. Our first algorithm is Monte Carlo and guarantees an O(n0.4+o(1)) worst-case update time, where the o(1) term hides the O(√loglogn/logn) factor. Our second algorithm is Las Vegas and guarantee an O(n0.49306) worst-case update time with high probability. Algorithms with better update time either needed to assume that the adversary is oblivious (e.g. [Kapron, King and Mountjoy SODA'13]) or can only guarantee an amortized update time. Our second result answers an open problem by Kapron et al. To the best of our knowledge, our algorithms are among a few non-trivial randomized dynamic algorithms that work against adaptive adversaries. The key to our results is a decomposition of graphs into subgraphs that either have high expansion or sparse. This decomposition serves as an interface between recent developments on (static) flow computation and many old ideas in dynamic graph algorithms: On the one hand, we can combine previous dynamic graph techniques to get faster dynamic spanning forest algorithms if such decomposition is given. On the other hand, we can adapt flow-related techniques (e.g. those from [Khandekar, Rao and Vazirani STOC'06], [Peng SODA'16], and [Orecchia and Zhu SODA'14]) to maintain such decomposition. To the best of our knowledge, this is the first time these flow techniques are used in fully dynamic graph algorithms.