用连续贝塞尔小波变换表示的贝索夫-汉克尔范数

Ashish Pathak, Dileep Kumar
{"title":"用连续贝塞尔小波变换表示的贝索夫-汉克尔范数","authors":"Ashish Pathak, Dileep Kumar","doi":"10.22541/au.163257138.88871318/v1","DOIUrl":null,"url":null,"abstract":"Using the theory of continuous Bessel wavelet transform in $L^2\n(\\mathbb{R})$-spaces, we established the Parseval and\ninversion formulas for the\n$L^{p,\\sigma}(\\mathbb{R}^+)$-\nspaces. We investigate continuity and boundedness properties of Bessel\nwavelet transform in Besov-Hankel spaces. Our main results: are the\ncharacterization of Besov-Hankel spaces by using continuous Bessel\nwavelet coefficient.","PeriodicalId":8426,"journal":{"name":"arXiv: Functional Analysis","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Besov-Hankel norms in terms of the continuous Bessel wavelet transform\",\"authors\":\"Ashish Pathak, Dileep Kumar\",\"doi\":\"10.22541/au.163257138.88871318/v1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using the theory of continuous Bessel wavelet transform in $L^2\\n(\\\\mathbb{R})$-spaces, we established the Parseval and\\ninversion formulas for the\\n$L^{p,\\\\sigma}(\\\\mathbb{R}^+)$-\\nspaces. We investigate continuity and boundedness properties of Bessel\\nwavelet transform in Besov-Hankel spaces. Our main results: are the\\ncharacterization of Besov-Hankel spaces by using continuous Bessel\\nwavelet coefficient.\",\"PeriodicalId\":8426,\"journal\":{\"name\":\"arXiv: Functional Analysis\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Functional Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22541/au.163257138.88871318/v1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22541/au.163257138.88871318/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

利用L^2(\mathbb{R})$-空间的连续贝塞尔小波变换理论,建立了L^{p,\sigma}(\mathbb{R} +)$-空间的Parseval和反演公式。研究Besov-Hankel空间中bessel小波变换的连续性和有界性。我们的主要成果是利用连续贝塞尔小波系数对Besov-Hankel空间进行表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Besov-Hankel norms in terms of the continuous Bessel wavelet transform
Using the theory of continuous Bessel wavelet transform in $L^2 (\mathbb{R})$-spaces, we established the Parseval and inversion formulas for the $L^{p,\sigma}(\mathbb{R}^+)$- spaces. We investigate continuity and boundedness properties of Bessel wavelet transform in Besov-Hankel spaces. Our main results: are the characterization of Besov-Hankel spaces by using continuous Bessel wavelet coefficient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信