{"title":"用连续贝塞尔小波变换表示的贝索夫-汉克尔范数","authors":"Ashish Pathak, Dileep Kumar","doi":"10.22541/au.163257138.88871318/v1","DOIUrl":null,"url":null,"abstract":"Using the theory of continuous Bessel wavelet transform in $L^2\n(\\mathbb{R})$-spaces, we established the Parseval and\ninversion formulas for the\n$L^{p,\\sigma}(\\mathbb{R}^+)$-\nspaces. We investigate continuity and boundedness properties of Bessel\nwavelet transform in Besov-Hankel spaces. Our main results: are the\ncharacterization of Besov-Hankel spaces by using continuous Bessel\nwavelet coefficient.","PeriodicalId":8426,"journal":{"name":"arXiv: Functional Analysis","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Besov-Hankel norms in terms of the continuous Bessel wavelet transform\",\"authors\":\"Ashish Pathak, Dileep Kumar\",\"doi\":\"10.22541/au.163257138.88871318/v1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using the theory of continuous Bessel wavelet transform in $L^2\\n(\\\\mathbb{R})$-spaces, we established the Parseval and\\ninversion formulas for the\\n$L^{p,\\\\sigma}(\\\\mathbb{R}^+)$-\\nspaces. We investigate continuity and boundedness properties of Bessel\\nwavelet transform in Besov-Hankel spaces. Our main results: are the\\ncharacterization of Besov-Hankel spaces by using continuous Bessel\\nwavelet coefficient.\",\"PeriodicalId\":8426,\"journal\":{\"name\":\"arXiv: Functional Analysis\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Functional Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22541/au.163257138.88871318/v1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22541/au.163257138.88871318/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Besov-Hankel norms in terms of the continuous Bessel wavelet transform
Using the theory of continuous Bessel wavelet transform in $L^2
(\mathbb{R})$-spaces, we established the Parseval and
inversion formulas for the
$L^{p,\sigma}(\mathbb{R}^+)$-
spaces. We investigate continuity and boundedness properties of Bessel
wavelet transform in Besov-Hankel spaces. Our main results: are the
characterization of Besov-Hankel spaces by using continuous Bessel
wavelet coefficient.