贝塞尔回归和bbreg包分析有界数据

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY
Wagner Barreto-Souza, Vinícius D. Mayrink, Alexandre B. Simas
{"title":"贝塞尔回归和bbreg包分析有界数据","authors":"Wagner Barreto-Souza,&nbsp;Vinícius D. Mayrink,&nbsp;Alexandre B. Simas","doi":"10.1111/anzs.12354","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Beta regression has been extensively used by statisticians and practitioners to model bounded continuous data without a strong competitor having the same main features. A class of normalised inverse-Gaussian (N-IG) process was introduced in the literature and has been explored in the Bayesian context as a powerful alternative to the Dirichlet process. Until this moment, no attention has been paid to the univariate N-IG distribution in the classical inference. In this paper, we propose the bessel regression based on the univariate N-IG distribution, which is an alternative to the beta model. The estimation of the parameters is done through an expectation–maximisation (EM) algorithm and the paper discusses how to perform inference. A useful and practical discrimination procedure is proposed for model selection between bessel and beta regressions. A new <span>R</span> package called <span>bbreg</span> is developed for fitting both bessel and beta regression models based on the EM-algorithm and further providing graphical tools for model adequacy and model selection as well. Proper documentation for this package is available. The performances of the models are evaluated under misspecification in a simulation study. An empirical illustration is explored to confront results from bessel and beta regressions by using the new <span>R</span> package <span>bbreg</span>.</p>\n </div>","PeriodicalId":55428,"journal":{"name":"Australian & New Zealand Journal of Statistics","volume":"63 4","pages":"685-706"},"PeriodicalIF":0.8000,"publicationDate":"2022-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bessel regression and bbreg package to analyse bounded data\",\"authors\":\"Wagner Barreto-Souza,&nbsp;Vinícius D. Mayrink,&nbsp;Alexandre B. Simas\",\"doi\":\"10.1111/anzs.12354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Beta regression has been extensively used by statisticians and practitioners to model bounded continuous data without a strong competitor having the same main features. A class of normalised inverse-Gaussian (N-IG) process was introduced in the literature and has been explored in the Bayesian context as a powerful alternative to the Dirichlet process. Until this moment, no attention has been paid to the univariate N-IG distribution in the classical inference. In this paper, we propose the bessel regression based on the univariate N-IG distribution, which is an alternative to the beta model. The estimation of the parameters is done through an expectation–maximisation (EM) algorithm and the paper discusses how to perform inference. A useful and practical discrimination procedure is proposed for model selection between bessel and beta regressions. A new <span>R</span> package called <span>bbreg</span> is developed for fitting both bessel and beta regression models based on the EM-algorithm and further providing graphical tools for model adequacy and model selection as well. Proper documentation for this package is available. The performances of the models are evaluated under misspecification in a simulation study. An empirical illustration is explored to confront results from bessel and beta regressions by using the new <span>R</span> package <span>bbreg</span>.</p>\\n </div>\",\"PeriodicalId\":55428,\"journal\":{\"name\":\"Australian & New Zealand Journal of Statistics\",\"volume\":\"63 4\",\"pages\":\"685-706\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australian & New Zealand Journal of Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12354\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian & New Zealand Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12354","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

Beta回归已被统计学家和从业者广泛用于建模有界连续数据,而没有具有相同主要特征的强大竞争对手。一类归一化逆高斯(N-IG)过程在文献中被引入,并在贝叶斯背景下作为Dirichlet过程的强大替代品进行了探索。到目前为止,还没有注意到经典推理中的单变量N-IG分布。在本文中,我们提出了基于单变量N-IG分布的贝塞尔回归,这是贝塔模型的替代方案。通过期望最大化(EM)算法对参数进行估计,并讨论了如何进行推理。提出了一种实用的贝塞尔回归和贝塔回归模型选择的判别方法。一个名为bbreg的新R包被开发出来,用于拟合基于em -算法的贝塞尔和贝塔回归模型,并进一步提供模型充分性和模型选择的图形工具。此包的适当文档是可用的。在仿真研究中,对模型的性能进行了评估。通过使用新的R包bbreg,探索了一个实证说明来面对贝塞尔和贝塔回归的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bessel regression and bbreg package to analyse bounded data

Beta regression has been extensively used by statisticians and practitioners to model bounded continuous data without a strong competitor having the same main features. A class of normalised inverse-Gaussian (N-IG) process was introduced in the literature and has been explored in the Bayesian context as a powerful alternative to the Dirichlet process. Until this moment, no attention has been paid to the univariate N-IG distribution in the classical inference. In this paper, we propose the bessel regression based on the univariate N-IG distribution, which is an alternative to the beta model. The estimation of the parameters is done through an expectation–maximisation (EM) algorithm and the paper discusses how to perform inference. A useful and practical discrimination procedure is proposed for model selection between bessel and beta regressions. A new R package called bbreg is developed for fitting both bessel and beta regression models based on the EM-algorithm and further providing graphical tools for model adequacy and model selection as well. Proper documentation for this package is available. The performances of the models are evaluated under misspecification in a simulation study. An empirical illustration is explored to confront results from bessel and beta regressions by using the new R package bbreg.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Australian & New Zealand Journal of Statistics
Australian & New Zealand Journal of Statistics 数学-统计学与概率论
CiteScore
1.30
自引率
9.10%
发文量
31
审稿时长
>12 weeks
期刊介绍: The Australian & New Zealand Journal of Statistics is an international journal managed jointly by the Statistical Society of Australia and the New Zealand Statistical Association. Its purpose is to report significant and novel contributions in statistics, ranging across articles on statistical theory, methodology, applications and computing. The journal has a particular focus on statistical techniques that can be readily applied to real-world problems, and on application papers with an Australasian emphasis. Outstanding articles submitted to the journal may be selected as Discussion Papers, to be read at a meeting of either the Statistical Society of Australia or the New Zealand Statistical Association. The main body of the journal is divided into three sections. The Theory and Methods Section publishes papers containing original contributions to the theory and methodology of statistics, econometrics and probability, and seeks papers motivated by a real problem and which demonstrate the proposed theory or methodology in that situation. There is a strong preference for papers motivated by, and illustrated with, real data. The Applications Section publishes papers demonstrating applications of statistical techniques to problems faced by users of statistics in the sciences, government and industry. A particular focus is the application of newly developed statistical methodology to real data and the demonstration of better use of established statistical methodology in an area of application. It seeks to aid teachers of statistics by placing statistical methods in context. The Statistical Computing Section publishes papers containing new algorithms, code snippets, or software descriptions (for open source software only) which enhance the field through the application of computing. Preference is given to papers featuring publically available code and/or data, and to those motivated by statistical methods for practical problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信