{"title":"Lie-Rinehart代数的Brauer-Clifford群","authors":"T. Guédénon","doi":"10.1142/s1005386722000086","DOIUrl":null,"url":null,"abstract":"In this paper we define the notion of Brauer–Clifford group for [Formula: see text]-Azumaya algebras when [Formula: see text] is a commutative algebra and[Formula: see text] is a [Formula: see text]-Lie algebra over a commutative ring [Formula: see text]. This is the situation that arises in applications having connections to differential geometry. This Brauer–Clifford group turns out to be an example of a Brauer group of a symmetric monoidal category.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Brauer–Clifford Group of Lie–Rinehart Algebras\",\"authors\":\"T. Guédénon\",\"doi\":\"10.1142/s1005386722000086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we define the notion of Brauer–Clifford group for [Formula: see text]-Azumaya algebras when [Formula: see text] is a commutative algebra and[Formula: see text] is a [Formula: see text]-Lie algebra over a commutative ring [Formula: see text]. This is the situation that arises in applications having connections to differential geometry. This Brauer–Clifford group turns out to be an example of a Brauer group of a symmetric monoidal category.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1005386722000086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1005386722000086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper we define the notion of Brauer–Clifford group for [Formula: see text]-Azumaya algebras when [Formula: see text] is a commutative algebra and[Formula: see text] is a [Formula: see text]-Lie algebra over a commutative ring [Formula: see text]. This is the situation that arises in applications having connections to differential geometry. This Brauer–Clifford group turns out to be an example of a Brauer group of a symmetric monoidal category.