非均匀泊泽维尔流

IF 0.3 Q4 MECHANICS
N. Burmasheva, Anastasiya V. Dyachkova, E. Prosviryakov
{"title":"非均匀泊泽维尔流","authors":"N. Burmasheva, Anastasiya V. Dyachkova, E. Prosviryakov","doi":"10.17223/19988621/77/6","DOIUrl":null,"url":null,"abstract":"The paper presents an investigation of the isothermal steady flow of a viscous incompressible fluid in an extended flat layer using hydrodynamic equations. The bottom of the layer under consideration is limited by a stationary solid hydrophilic surface. At the upper boundary of the layer, the pressure field, which is inhomogeneous in both horizontal coordinates, and the velocity field are specified. These boundary conditions allow one to generalize the classical Poiseuille flow. The exact solution, satisfying the set boundary value problem, is described by a series of polynomials of different orders. The highest (fifth) degree of the polynomials corresponds to a homogeneous component of the horizontal velocity. Here, the pressure field depends only on the horizontal coordinates; the dependence is linear. The detailed analysis of the velocity field is carried out. The obtained results confirm that the determined exact solution can describe multiple stratification of the velocity field and the corresponding field of tangent stresses. The analysis of spectral properties of the velocity field is performed for a general case without specifying the values of physical constants that unambiguously identify the studied fluid. Therefore, the presented results are applicable to viscous fluids of various nature.","PeriodicalId":43729,"journal":{"name":"Vestnik Tomskogo Gosudarstvennogo Universiteta-Matematika i Mekhanika-Tomsk State University Journal of Mathematics and Mechanics","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inhomogeneous Poiseuille flow\",\"authors\":\"N. Burmasheva, Anastasiya V. Dyachkova, E. Prosviryakov\",\"doi\":\"10.17223/19988621/77/6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents an investigation of the isothermal steady flow of a viscous incompressible fluid in an extended flat layer using hydrodynamic equations. The bottom of the layer under consideration is limited by a stationary solid hydrophilic surface. At the upper boundary of the layer, the pressure field, which is inhomogeneous in both horizontal coordinates, and the velocity field are specified. These boundary conditions allow one to generalize the classical Poiseuille flow. The exact solution, satisfying the set boundary value problem, is described by a series of polynomials of different orders. The highest (fifth) degree of the polynomials corresponds to a homogeneous component of the horizontal velocity. Here, the pressure field depends only on the horizontal coordinates; the dependence is linear. The detailed analysis of the velocity field is carried out. The obtained results confirm that the determined exact solution can describe multiple stratification of the velocity field and the corresponding field of tangent stresses. The analysis of spectral properties of the velocity field is performed for a general case without specifying the values of physical constants that unambiguously identify the studied fluid. Therefore, the presented results are applicable to viscous fluids of various nature.\",\"PeriodicalId\":43729,\"journal\":{\"name\":\"Vestnik Tomskogo Gosudarstvennogo Universiteta-Matematika i Mekhanika-Tomsk State University Journal of Mathematics and Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vestnik Tomskogo Gosudarstvennogo Universiteta-Matematika i Mekhanika-Tomsk State University Journal of Mathematics and Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17223/19988621/77/6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik Tomskogo Gosudarstvennogo Universiteta-Matematika i Mekhanika-Tomsk State University Journal of Mathematics and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17223/19988621/77/6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

本文用流体力学方程研究了粘性不可压缩流体在扩展平面层中的等温定常流动。所考虑的层的底部被一个固定的固体亲水表面所限制。在层的上边界处,确定了在水平坐标系下均不均匀的压力场和速度场。这些边界条件使我们可以推广经典泊泽维尔流。满足集边值问题的精确解用一系列不同阶的多项式来描述。多项式的最高次(第五次)对应于水平速度的齐次分量。这里,压力场只依赖于水平坐标;相关性是线性的。对速度场进行了详细的分析。结果表明,所确定的精确解可以描述速度场和切向应力场的多重分层。速度场的频谱特性分析是在一般情况下进行的,没有指定明确识别所研究流体的物理常数的值。因此,本文的结果适用于各种性质的粘性流体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inhomogeneous Poiseuille flow
The paper presents an investigation of the isothermal steady flow of a viscous incompressible fluid in an extended flat layer using hydrodynamic equations. The bottom of the layer under consideration is limited by a stationary solid hydrophilic surface. At the upper boundary of the layer, the pressure field, which is inhomogeneous in both horizontal coordinates, and the velocity field are specified. These boundary conditions allow one to generalize the classical Poiseuille flow. The exact solution, satisfying the set boundary value problem, is described by a series of polynomials of different orders. The highest (fifth) degree of the polynomials corresponds to a homogeneous component of the horizontal velocity. Here, the pressure field depends only on the horizontal coordinates; the dependence is linear. The detailed analysis of the velocity field is carried out. The obtained results confirm that the determined exact solution can describe multiple stratification of the velocity field and the corresponding field of tangent stresses. The analysis of spectral properties of the velocity field is performed for a general case without specifying the values of physical constants that unambiguously identify the studied fluid. Therefore, the presented results are applicable to viscous fluids of various nature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
66.70%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信