急性呼吸窘迫综合征肺压-容积曲线的s型方程分析

S. Orfao, N. Hochhausen, R. Kuhlen, D. Henzler
{"title":"急性呼吸窘迫综合征肺压-容积曲线的s型方程分析","authors":"S. Orfao, N. Hochhausen, R. Kuhlen, D. Henzler","doi":"10.2174/1874828700801010054","DOIUrl":null,"url":null,"abstract":"Pulmonary pressure-volume curves (P-V curves) of patients with acute lung injury are commonly analyzed us- ing a parametric algorithm with symmetrical properties. Some of the aspects observed after performing nonlinear regres- sion for two models capable of fitting symmetric, respectively asymmetric data are discussed. One analyzed aspect was the algebraic complexity of the asymmetric model that does not allow for an estimation of the boundaries of the zone of maximal compliance directly from the parameter estimates in contrast to the symmetric model. Moreover, mathematical evidence is provided. Using a sigmoid equation for analysis of P-V curves a systematic deviation caused by asymmetrical distribution was en- countered, leading to non-robust definitions of lower and upper inflection points. Increasing the number of parameters to fit asymmetric data does not increase physiological expression. We conclude that some of the drawbacks in using P-V curves may be attributed to imprecise analysis tools. To increase the value of P-V curves other forms of mathematical analysis should be investigated.","PeriodicalId":88750,"journal":{"name":"The open critical care medicine journal","volume":"9 1","pages":"54-62"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Analysis of Sigmoidal Equations To Describe the Pulmonary Pressure- Volume Curve in Acute Respiratory Distress Syndrome~!2008-09-18~!2008-10-27~!2008-12-05~!\",\"authors\":\"S. Orfao, N. Hochhausen, R. Kuhlen, D. Henzler\",\"doi\":\"10.2174/1874828700801010054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pulmonary pressure-volume curves (P-V curves) of patients with acute lung injury are commonly analyzed us- ing a parametric algorithm with symmetrical properties. Some of the aspects observed after performing nonlinear regres- sion for two models capable of fitting symmetric, respectively asymmetric data are discussed. One analyzed aspect was the algebraic complexity of the asymmetric model that does not allow for an estimation of the boundaries of the zone of maximal compliance directly from the parameter estimates in contrast to the symmetric model. Moreover, mathematical evidence is provided. Using a sigmoid equation for analysis of P-V curves a systematic deviation caused by asymmetrical distribution was en- countered, leading to non-robust definitions of lower and upper inflection points. Increasing the number of parameters to fit asymmetric data does not increase physiological expression. We conclude that some of the drawbacks in using P-V curves may be attributed to imprecise analysis tools. To increase the value of P-V curves other forms of mathematical analysis should be investigated.\",\"PeriodicalId\":88750,\"journal\":{\"name\":\"The open critical care medicine journal\",\"volume\":\"9 1\",\"pages\":\"54-62\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The open critical care medicine journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1874828700801010054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The open critical care medicine journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1874828700801010054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

急性肺损伤患者肺压力-容积曲线(P-V曲线)的分析常用一种具有对称性的参数化算法。讨论了对两个模型进行非线性回归后所观察到的一些方面,这两个模型分别能够拟合对称和非对称数据。分析的一个方面是不对称模型的代数复杂性,与对称模型相比,不允许直接从参数估计中估计最大柔度区域的边界。此外,还提供了数学证据。利用s型方程对P-V曲线进行分析,克服了由不对称分布引起的系统偏差,从而导致下拐点和上拐点的非鲁棒定义。增加参数的数量来拟合不对称数据并不会增加生理表达。我们得出结论,使用P-V曲线的一些缺点可能归因于不精确的分析工具。为了提高P-V曲线的价值,应该研究其他形式的数学分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of Sigmoidal Equations To Describe the Pulmonary Pressure- Volume Curve in Acute Respiratory Distress Syndrome~!2008-09-18~!2008-10-27~!2008-12-05~!
Pulmonary pressure-volume curves (P-V curves) of patients with acute lung injury are commonly analyzed us- ing a parametric algorithm with symmetrical properties. Some of the aspects observed after performing nonlinear regres- sion for two models capable of fitting symmetric, respectively asymmetric data are discussed. One analyzed aspect was the algebraic complexity of the asymmetric model that does not allow for an estimation of the boundaries of the zone of maximal compliance directly from the parameter estimates in contrast to the symmetric model. Moreover, mathematical evidence is provided. Using a sigmoid equation for analysis of P-V curves a systematic deviation caused by asymmetrical distribution was en- countered, leading to non-robust definitions of lower and upper inflection points. Increasing the number of parameters to fit asymmetric data does not increase physiological expression. We conclude that some of the drawbacks in using P-V curves may be attributed to imprecise analysis tools. To increase the value of P-V curves other forms of mathematical analysis should be investigated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信