一类SISO严格反馈非线性系统的神经网络输出反馈跟踪控制

Hui Hu, Zhongxiao Hao, Pengfei Guo, Xilong Qu
{"title":"一类SISO严格反馈非线性系统的神经网络输出反馈跟踪控制","authors":"Hui Hu, Zhongxiao Hao, Pengfei Guo, Xilong Qu","doi":"10.4304/jnw.9.9.2521-2528","DOIUrl":null,"url":null,"abstract":"The paper proposes a new output feedback tracking controller using neural network (NN) for a class of SISO strict-feedback nonlinear systems that only the output variables can be measured. The distinguished aspect of the controller is that no backstepping design is employed, and the strict-feedback systems could be transformed into the standard affine form. The gains of observer and controller are simultaneously tuned according to output tracking error based on non-separation principle design. With the universal approximation property of NN and the simultaneous parametrisation, no Lipschitz assumption and SPR condition are employed which makes the system construct simple. The proposed neural network controller can guarantee that output tracking error and all the states in the closed-loop system are the semi-globally ultimately bounded by Lyapunov approach. Finally the simulation results are used to demonstrate the effectiveness of the control scheme.","PeriodicalId":14643,"journal":{"name":"J. Networks","volume":"32 1","pages":"2521-2528"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Output Feedback Tracking Control Based on Neural Network for a Class of SISO Strict Feedback Nonlinear Systems\",\"authors\":\"Hui Hu, Zhongxiao Hao, Pengfei Guo, Xilong Qu\",\"doi\":\"10.4304/jnw.9.9.2521-2528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper proposes a new output feedback tracking controller using neural network (NN) for a class of SISO strict-feedback nonlinear systems that only the output variables can be measured. The distinguished aspect of the controller is that no backstepping design is employed, and the strict-feedback systems could be transformed into the standard affine form. The gains of observer and controller are simultaneously tuned according to output tracking error based on non-separation principle design. With the universal approximation property of NN and the simultaneous parametrisation, no Lipschitz assumption and SPR condition are employed which makes the system construct simple. The proposed neural network controller can guarantee that output tracking error and all the states in the closed-loop system are the semi-globally ultimately bounded by Lyapunov approach. Finally the simulation results are used to demonstrate the effectiveness of the control scheme.\",\"PeriodicalId\":14643,\"journal\":{\"name\":\"J. Networks\",\"volume\":\"32 1\",\"pages\":\"2521-2528\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4304/jnw.9.9.2521-2528\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4304/jnw.9.9.2521-2528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对一类只有输出变量可测的SISO严格反馈非线性系统,提出了一种新的神经网络输出反馈跟踪控制器。该控制器的特点是不采用反步设计,将严格反馈系统转化为标准仿射形式。基于无分离原理设计,根据输出跟踪误差同时调整观测器和控制器的增益。利用神经网络的普遍逼近性质和同时参数化,不使用Lipschitz假设和SPR条件,使系统结构简单。所提出的神经网络控制器可以保证输出跟踪误差和闭环系统的所有状态都是由Lyapunov方法最终有界的半全局。最后通过仿真结果验证了该控制方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Output Feedback Tracking Control Based on Neural Network for a Class of SISO Strict Feedback Nonlinear Systems
The paper proposes a new output feedback tracking controller using neural network (NN) for a class of SISO strict-feedback nonlinear systems that only the output variables can be measured. The distinguished aspect of the controller is that no backstepping design is employed, and the strict-feedback systems could be transformed into the standard affine form. The gains of observer and controller are simultaneously tuned according to output tracking error based on non-separation principle design. With the universal approximation property of NN and the simultaneous parametrisation, no Lipschitz assumption and SPR condition are employed which makes the system construct simple. The proposed neural network controller can guarantee that output tracking error and all the states in the closed-loop system are the semi-globally ultimately bounded by Lyapunov approach. Finally the simulation results are used to demonstrate the effectiveness of the control scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信