不同预测方案对无损不可见水印的影响

Nimisha Agarwal, Ayush Kumar, Juhi Bhadviya, G. Ramponi
{"title":"不同预测方案对无损不可见水印的影响","authors":"Nimisha Agarwal, Ayush Kumar, Juhi Bhadviya, G. Ramponi","doi":"10.1109/ISSPIT.2013.6781855","DOIUrl":null,"url":null,"abstract":"In view of high data embedding capacity and many real time applications, we have proposed a reversible invisible watermarking algorithm. The technique is used to embed a set of watermark data in an image using a one pass embedding process and later recovering the original image without any loss, after the extraction of watermark. Main motivation behind this work is the usage of two different prediction schemes-Weighted Causal Average and Context Based Image Compression Algorithm, to obtain two images similar to the original image, and using the error pattern resulted from the two predicted images to embed data depending upon the nature of image. Based on this error pattern, binary data is embedded in an image using two different embedding schemes- Bijective Mirror Mapping technique and Histogram Shifting Algorithm, resulting in better embedding capacity or payload capacity and better PSNR than other reversible one-pass watermarking algorithms mentioned in literature.","PeriodicalId":88960,"journal":{"name":"Proceedings of the ... IEEE International Symposium on Signal Processing and Information Technology. IEEE International Symposium on Signal Processing and Information Technology","volume":"7 1","pages":"000064-000068"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of different prediction schemes on lossless invisible watermarking\",\"authors\":\"Nimisha Agarwal, Ayush Kumar, Juhi Bhadviya, G. Ramponi\",\"doi\":\"10.1109/ISSPIT.2013.6781855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In view of high data embedding capacity and many real time applications, we have proposed a reversible invisible watermarking algorithm. The technique is used to embed a set of watermark data in an image using a one pass embedding process and later recovering the original image without any loss, after the extraction of watermark. Main motivation behind this work is the usage of two different prediction schemes-Weighted Causal Average and Context Based Image Compression Algorithm, to obtain two images similar to the original image, and using the error pattern resulted from the two predicted images to embed data depending upon the nature of image. Based on this error pattern, binary data is embedded in an image using two different embedding schemes- Bijective Mirror Mapping technique and Histogram Shifting Algorithm, resulting in better embedding capacity or payload capacity and better PSNR than other reversible one-pass watermarking algorithms mentioned in literature.\",\"PeriodicalId\":88960,\"journal\":{\"name\":\"Proceedings of the ... IEEE International Symposium on Signal Processing and Information Technology. IEEE International Symposium on Signal Processing and Information Technology\",\"volume\":\"7 1\",\"pages\":\"000064-000068\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... IEEE International Symposium on Signal Processing and Information Technology. IEEE International Symposium on Signal Processing and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSPIT.2013.6781855\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... IEEE International Symposium on Signal Processing and Information Technology. IEEE International Symposium on Signal Processing and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2013.6781855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对高数据嵌入容量和多实时应用的特点,提出了一种可逆的不可见水印算法。该技术通过一次嵌入过程将一组水印数据嵌入到图像中,然后在水印提取后不丢失原始图像。这项工作背后的主要动机是使用两种不同的预测方案-加权因果平均和基于上下文的图像压缩算法,获得与原始图像相似的两幅图像,并根据图像的性质使用两幅预测图像产生的误差模式来嵌入数据。基于这种误差模式,采用双物镜映射技术和直方图偏移算法两种不同的嵌入方案将二值数据嵌入到图像中,与文献中提到的其他可逆一通水印算法相比,具有更好的嵌入容量或有效载荷容量和更好的PSNR。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of different prediction schemes on lossless invisible watermarking
In view of high data embedding capacity and many real time applications, we have proposed a reversible invisible watermarking algorithm. The technique is used to embed a set of watermark data in an image using a one pass embedding process and later recovering the original image without any loss, after the extraction of watermark. Main motivation behind this work is the usage of two different prediction schemes-Weighted Causal Average and Context Based Image Compression Algorithm, to obtain two images similar to the original image, and using the error pattern resulted from the two predicted images to embed data depending upon the nature of image. Based on this error pattern, binary data is embedded in an image using two different embedding schemes- Bijective Mirror Mapping technique and Histogram Shifting Algorithm, resulting in better embedding capacity or payload capacity and better PSNR than other reversible one-pass watermarking algorithms mentioned in literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信