一种用于三维人脸重建的新型双路径编码器-解码器网络

Xianfeng Li, Zichun Weng, Juntao Liang, Lei Cei, Youjun Xiang, Yuli Fu
{"title":"一种用于三维人脸重建的新型双路径编码器-解码器网络","authors":"Xianfeng Li, Zichun Weng, Juntao Liang, Lei Cei, Youjun Xiang, Yuli Fu","doi":"10.1109/ICASSP40776.2020.9053699","DOIUrl":null,"url":null,"abstract":"3D Morphable Model (3DMM) is a statistical tool widely employed in reconstructing 3D face shape. Existing methods are aimed at predicting 3DMM shape parameters with a single encoder but suffer from unclear distinction of different attributes. To address this problem, Two-Pathway Encoder-Decoder Network (2PEDN) is proposed to regress the identity and expression components via global and local pathways. Specifically, each 2D face image is cropped into global face and local details as the inputs for the corresponding pathways. 2PEDN is trained to predict 3D face shape components with two sets of loss functions designed to supervise 3D face reconstruction error and face identification error. To reduce the conflict between abundant facial details and saving computer storage space, a magnitudes converter is devised. Experiments demonstrate that the proposed method outperforms several 3D face recontruction methods.","PeriodicalId":13127,"journal":{"name":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"186 1","pages":"3682-3686"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Novel Two-Pathway Encoder-Decoder Network for 3D Face Reconstruction\",\"authors\":\"Xianfeng Li, Zichun Weng, Juntao Liang, Lei Cei, Youjun Xiang, Yuli Fu\",\"doi\":\"10.1109/ICASSP40776.2020.9053699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"3D Morphable Model (3DMM) is a statistical tool widely employed in reconstructing 3D face shape. Existing methods are aimed at predicting 3DMM shape parameters with a single encoder but suffer from unclear distinction of different attributes. To address this problem, Two-Pathway Encoder-Decoder Network (2PEDN) is proposed to regress the identity and expression components via global and local pathways. Specifically, each 2D face image is cropped into global face and local details as the inputs for the corresponding pathways. 2PEDN is trained to predict 3D face shape components with two sets of loss functions designed to supervise 3D face reconstruction error and face identification error. To reduce the conflict between abundant facial details and saving computer storage space, a magnitudes converter is devised. Experiments demonstrate that the proposed method outperforms several 3D face recontruction methods.\",\"PeriodicalId\":13127,\"journal\":{\"name\":\"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"186 1\",\"pages\":\"3682-3686\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP40776.2020.9053699\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP40776.2020.9053699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

三维变形模型(3DMM)是一种广泛应用于三维脸型重建的统计工具。现有方法的目的是利用单个编码器预测3DMM形状参数,但存在不同属性区分不清的问题。为了解决这个问题,提出了双路径编码器-解码器网络(2PEDN),通过全局和局部路径回归身份和表达成分。具体来说,每个二维人脸图像被裁剪成全局人脸和局部细节作为相应路径的输入。2PEDN通过两组损失函数对三维人脸重建误差和人脸识别误差进行训练来预测三维人脸形状分量。为了减少丰富的面部细节与节省计算机存储空间之间的冲突,设计了一种数量级转换器。实验表明,该方法优于几种三维人脸重建方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Two-Pathway Encoder-Decoder Network for 3D Face Reconstruction
3D Morphable Model (3DMM) is a statistical tool widely employed in reconstructing 3D face shape. Existing methods are aimed at predicting 3DMM shape parameters with a single encoder but suffer from unclear distinction of different attributes. To address this problem, Two-Pathway Encoder-Decoder Network (2PEDN) is proposed to regress the identity and expression components via global and local pathways. Specifically, each 2D face image is cropped into global face and local details as the inputs for the corresponding pathways. 2PEDN is trained to predict 3D face shape components with two sets of loss functions designed to supervise 3D face reconstruction error and face identification error. To reduce the conflict between abundant facial details and saving computer storage space, a magnitudes converter is devised. Experiments demonstrate that the proposed method outperforms several 3D face recontruction methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信