{"title":"在$K$循环调度下运行的集群工具中最坏情况下晶圆延迟的特征","authors":"Dong-Hyun Roh, Tae-Eog Lee","doi":"10.1109/COASE.2018.8560521","DOIUrl":null,"url":null,"abstract":"Cluster tools are widely used manufacturing equipment in semiconductor manufacturing systems and consist of several process chambers, loadlock modules, and a wafer transport robot. The operation of the cluster tool relies on decision making about the robot operations. Generally, a robot iteratively determines its next task according to a given task sequence. This tool schedule is called a cyclic schedule. If the same timing pattern repeats every $K$ work cycles in a cyclic schedule, the schedule is called a $K$ -cyclic schedule. In a cluster tool with a $K$ -cyclic schedule, wafer delay, which is the time that a processed wafer is stored in the process chamber, becomes an important issue. In this study, we identify the worst-case wafer delay, which is the maximum value of wafer delay among all the $K$ -cyclic schedules a cluster tool can have. To do this, we present timed event graph models for dual-armed and single-armed cluster tools and briefly explain the previous research on closed-form formulae of token delays in timed event graphs with K-cyclic schedules suggested by Lee et al. [1]. Finally, we propose a method for deriving a closed-form formula for the worst-case wafer delay in a cluster tool, which can be applied to arbitrary wafer flow patterns and time parameters.","PeriodicalId":6518,"journal":{"name":"2018 IEEE 14th International Conference on Automation Science and Engineering (CASE)","volume":"25 1","pages":"1562-1567"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterizing the Worst-Case Wafer Delay in a Cluster Tool Operated in a $K$-Cyclic Schedule\",\"authors\":\"Dong-Hyun Roh, Tae-Eog Lee\",\"doi\":\"10.1109/COASE.2018.8560521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cluster tools are widely used manufacturing equipment in semiconductor manufacturing systems and consist of several process chambers, loadlock modules, and a wafer transport robot. The operation of the cluster tool relies on decision making about the robot operations. Generally, a robot iteratively determines its next task according to a given task sequence. This tool schedule is called a cyclic schedule. If the same timing pattern repeats every $K$ work cycles in a cyclic schedule, the schedule is called a $K$ -cyclic schedule. In a cluster tool with a $K$ -cyclic schedule, wafer delay, which is the time that a processed wafer is stored in the process chamber, becomes an important issue. In this study, we identify the worst-case wafer delay, which is the maximum value of wafer delay among all the $K$ -cyclic schedules a cluster tool can have. To do this, we present timed event graph models for dual-armed and single-armed cluster tools and briefly explain the previous research on closed-form formulae of token delays in timed event graphs with K-cyclic schedules suggested by Lee et al. [1]. Finally, we propose a method for deriving a closed-form formula for the worst-case wafer delay in a cluster tool, which can be applied to arbitrary wafer flow patterns and time parameters.\",\"PeriodicalId\":6518,\"journal\":{\"name\":\"2018 IEEE 14th International Conference on Automation Science and Engineering (CASE)\",\"volume\":\"25 1\",\"pages\":\"1562-1567\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 14th International Conference on Automation Science and Engineering (CASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COASE.2018.8560521\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 14th International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COASE.2018.8560521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Characterizing the Worst-Case Wafer Delay in a Cluster Tool Operated in a $K$-Cyclic Schedule
Cluster tools are widely used manufacturing equipment in semiconductor manufacturing systems and consist of several process chambers, loadlock modules, and a wafer transport robot. The operation of the cluster tool relies on decision making about the robot operations. Generally, a robot iteratively determines its next task according to a given task sequence. This tool schedule is called a cyclic schedule. If the same timing pattern repeats every $K$ work cycles in a cyclic schedule, the schedule is called a $K$ -cyclic schedule. In a cluster tool with a $K$ -cyclic schedule, wafer delay, which is the time that a processed wafer is stored in the process chamber, becomes an important issue. In this study, we identify the worst-case wafer delay, which is the maximum value of wafer delay among all the $K$ -cyclic schedules a cluster tool can have. To do this, we present timed event graph models for dual-armed and single-armed cluster tools and briefly explain the previous research on closed-form formulae of token delays in timed event graphs with K-cyclic schedules suggested by Lee et al. [1]. Finally, we propose a method for deriving a closed-form formula for the worst-case wafer delay in a cluster tool, which can be applied to arbitrary wafer flow patterns and time parameters.