双共形变形的四维爱因斯坦度量

IF 0.5 Q3 MATHEMATICS
P. Baird, J. Ventura
{"title":"双共形变形的四维爱因斯坦度量","authors":"P. Baird, J. Ventura","doi":"10.5817/am2021-5-255","DOIUrl":null,"url":null,"abstract":"Biconformal deformations take place in the presence of a conformal foliation, deforming by different factors tangent to and orthogonal to the foliation. Four-manifolds endowed with a conformal foliation by surfaces present a natural context to put into effect this process. We develop the tools to calculate the transformation of the Ricci curvature under such deformations and apply our method to construct Einstein $4$-manifolds. One particular family of examples have ends that collapse asymptotically to ${\\mathbb R}^2$.","PeriodicalId":45191,"journal":{"name":"Archivum Mathematicum","volume":"99 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Four-dimensional Einstein metrics from biconformal deformations\",\"authors\":\"P. Baird, J. Ventura\",\"doi\":\"10.5817/am2021-5-255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biconformal deformations take place in the presence of a conformal foliation, deforming by different factors tangent to and orthogonal to the foliation. Four-manifolds endowed with a conformal foliation by surfaces present a natural context to put into effect this process. We develop the tools to calculate the transformation of the Ricci curvature under such deformations and apply our method to construct Einstein $4$-manifolds. One particular family of examples have ends that collapse asymptotically to ${\\\\mathbb R}^2$.\",\"PeriodicalId\":45191,\"journal\":{\"name\":\"Archivum Mathematicum\",\"volume\":\"99 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archivum Mathematicum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5817/am2021-5-255\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archivum Mathematicum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5817/am2021-5-255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

双保形变形发生在保形面理存在的情况下,由与面理相切或正交的不同因素引起变形。具有表面保形叶理的四流形为这一过程提供了自然的环境。我们开发了计算此类变形下Ricci曲率变换的工具,并将我们的方法应用于构造Einstein $4$-流形。一类特殊的例子的端点渐近坍缩到${\mathbb R}^2$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Four-dimensional Einstein metrics from biconformal deformations
Biconformal deformations take place in the presence of a conformal foliation, deforming by different factors tangent to and orthogonal to the foliation. Four-manifolds endowed with a conformal foliation by surfaces present a natural context to put into effect this process. We develop the tools to calculate the transformation of the Ricci curvature under such deformations and apply our method to construct Einstein $4$-manifolds. One particular family of examples have ends that collapse asymptotically to ${\mathbb R}^2$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archivum Mathematicum
Archivum Mathematicum MATHEMATICS-
CiteScore
0.70
自引率
16.70%
发文量
0
审稿时长
35 weeks
期刊介绍: Archivum Mathematicum is a mathematical journal which publishes exclusively scientific mathematical papers. The journal, founded in 1965, is published by the Department of Mathematics and Statistics of the Faculty of Science of Masaryk University. A review of each published paper appears in Mathematical Reviews and also in Zentralblatt für Mathematik. The journal is indexed by Scopus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信