{"title":"双共形变形的四维爱因斯坦度量","authors":"P. Baird, J. Ventura","doi":"10.5817/am2021-5-255","DOIUrl":null,"url":null,"abstract":"Biconformal deformations take place in the presence of a conformal foliation, deforming by different factors tangent to and orthogonal to the foliation. Four-manifolds endowed with a conformal foliation by surfaces present a natural context to put into effect this process. We develop the tools to calculate the transformation of the Ricci curvature under such deformations and apply our method to construct Einstein $4$-manifolds. One particular family of examples have ends that collapse asymptotically to ${\\mathbb R}^2$.","PeriodicalId":45191,"journal":{"name":"Archivum Mathematicum","volume":"99 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Four-dimensional Einstein metrics from biconformal deformations\",\"authors\":\"P. Baird, J. Ventura\",\"doi\":\"10.5817/am2021-5-255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biconformal deformations take place in the presence of a conformal foliation, deforming by different factors tangent to and orthogonal to the foliation. Four-manifolds endowed with a conformal foliation by surfaces present a natural context to put into effect this process. We develop the tools to calculate the transformation of the Ricci curvature under such deformations and apply our method to construct Einstein $4$-manifolds. One particular family of examples have ends that collapse asymptotically to ${\\\\mathbb R}^2$.\",\"PeriodicalId\":45191,\"journal\":{\"name\":\"Archivum Mathematicum\",\"volume\":\"99 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archivum Mathematicum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5817/am2021-5-255\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archivum Mathematicum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5817/am2021-5-255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Four-dimensional Einstein metrics from biconformal deformations
Biconformal deformations take place in the presence of a conformal foliation, deforming by different factors tangent to and orthogonal to the foliation. Four-manifolds endowed with a conformal foliation by surfaces present a natural context to put into effect this process. We develop the tools to calculate the transformation of the Ricci curvature under such deformations and apply our method to construct Einstein $4$-manifolds. One particular family of examples have ends that collapse asymptotically to ${\mathbb R}^2$.
期刊介绍:
Archivum Mathematicum is a mathematical journal which publishes exclusively scientific mathematical papers. The journal, founded in 1965, is published by the Department of Mathematics and Statistics of the Faculty of Science of Masaryk University. A review of each published paper appears in Mathematical Reviews and also in Zentralblatt für Mathematik. The journal is indexed by Scopus.