混合锥尖奇异度量空间的l2 - poincar - dolbeault引理

IF 0.5 3区 数学 Q3 MATHEMATICS
Junchao Shentu, Chen Zhao
{"title":"混合锥尖奇异度量空间的l2 - poincar<s:1> - dolbeault引理","authors":"Junchao Shentu, Chen Zhao","doi":"10.1142/s1793525321500473","DOIUrl":null,"url":null,"abstract":"The existence of Kähler Einstein metrics with mixed cone and cusp singularity has received considerable attentions in recent years. It is believed that such kind of metric would give rise to important geometric invariants. We computed their [Formula: see text]-Hodge–Frölicher spectral sequence under the Dirichlet and Neumann boundary conditions and examine the pure Hodge structures on them. It turns out that these cohomologies agree well with the de Rham cohomology of a good compactification.","PeriodicalId":49151,"journal":{"name":"Journal of Topology and Analysis","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2021-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An L2-Poincaré–Dolbeault lemma of spaces with mixed cone-cusp singular metrics\",\"authors\":\"Junchao Shentu, Chen Zhao\",\"doi\":\"10.1142/s1793525321500473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The existence of Kähler Einstein metrics with mixed cone and cusp singularity has received considerable attentions in recent years. It is believed that such kind of metric would give rise to important geometric invariants. We computed their [Formula: see text]-Hodge–Frölicher spectral sequence under the Dirichlet and Neumann boundary conditions and examine the pure Hodge structures on them. It turns out that these cohomologies agree well with the de Rham cohomology of a good compactification.\",\"PeriodicalId\":49151,\"journal\":{\"name\":\"Journal of Topology and Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Topology and Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793525321500473\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology and Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793525321500473","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

具有锥尖混合奇点的Kähler爱因斯坦度量的存在性近年来受到了广泛的关注。人们相信这种度规会产生重要的几何不变量。我们在狄利克雷和诺伊曼边界条件下计算了它们的[公式:见原文]-Hodge-Frölicher谱序列,并在它们上面检验了纯霍奇结构。结果表明,这些上同调与良好紧化的de Rham上同调是一致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An L2-Poincaré–Dolbeault lemma of spaces with mixed cone-cusp singular metrics
The existence of Kähler Einstein metrics with mixed cone and cusp singularity has received considerable attentions in recent years. It is believed that such kind of metric would give rise to important geometric invariants. We computed their [Formula: see text]-Hodge–Frölicher spectral sequence under the Dirichlet and Neumann boundary conditions and examine the pure Hodge structures on them. It turns out that these cohomologies agree well with the de Rham cohomology of a good compactification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
13
审稿时长
>12 weeks
期刊介绍: This journal is devoted to topology and analysis, broadly defined to include, for instance, differential geometry, geometric topology, geometric analysis, geometric group theory, index theory, noncommutative geometry, and aspects of probability on discrete structures, and geometry of Banach spaces. We welcome all excellent papers that have a geometric and/or analytic flavor that fosters the interactions between these fields. Papers published in this journal should break new ground or represent definitive progress on problems of current interest. On rare occasion, we will also accept survey papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信