一种基于项目反应理论的问题分类计算策略

G. H. Nunes, B. A. Oliveira, C. Nametala
{"title":"一种基于项目反应理论的问题分类计算策略","authors":"G. H. Nunes, B. A. Oliveira, C. Nametala","doi":"10.22456/2175-2745.92406","DOIUrl":null,"url":null,"abstract":"The National High School Examination (ENEM) gains each year more importance, as it gradually, replacing traditional vestibular. Many simulations are done almost randomly by teachers or systems, with questions chosen without discretion. With this methodology, if a test needs to be reapplied, it is not possible to recreate it with questions that have the same difficulty as those used in the first evaluation. In this context, the present work presents the development of an ENEM Intelligent Simulation Generation System that calculates the parameters of Item Response Theory (TRI) of questions that have already been applied in ENEM and, based on them, classifies them. in groups of difficulty, thus enabling the generation of balanced tests. For this, the K-means algorithm was used to group the questions into three difficulty groups: easy, medium and difficult. To verify the functioning of the system, a simulation with 180 questions was generated along the ENEM model. It could be seen that in 37.7% of cases this happened. This hit rate was not greater because the algorithm confounded the difficulty of issues that are in close classes. However, the system has a hit rate of 92.8% in the classification of questions that are in distant groups.","PeriodicalId":82472,"journal":{"name":"Research initiative, treatment action : RITA","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Computational Strategy for Classification of Enem Issues Based on Item Response Theory\",\"authors\":\"G. H. Nunes, B. A. Oliveira, C. Nametala\",\"doi\":\"10.22456/2175-2745.92406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The National High School Examination (ENEM) gains each year more importance, as it gradually, replacing traditional vestibular. Many simulations are done almost randomly by teachers or systems, with questions chosen without discretion. With this methodology, if a test needs to be reapplied, it is not possible to recreate it with questions that have the same difficulty as those used in the first evaluation. In this context, the present work presents the development of an ENEM Intelligent Simulation Generation System that calculates the parameters of Item Response Theory (TRI) of questions that have already been applied in ENEM and, based on them, classifies them. in groups of difficulty, thus enabling the generation of balanced tests. For this, the K-means algorithm was used to group the questions into three difficulty groups: easy, medium and difficult. To verify the functioning of the system, a simulation with 180 questions was generated along the ENEM model. It could be seen that in 37.7% of cases this happened. This hit rate was not greater because the algorithm confounded the difficulty of issues that are in close classes. However, the system has a hit rate of 92.8% in the classification of questions that are in distant groups.\",\"PeriodicalId\":82472,\"journal\":{\"name\":\"Research initiative, treatment action : RITA\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research initiative, treatment action : RITA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22456/2175-2745.92406\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research initiative, treatment action : RITA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22456/2175-2745.92406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

国家高中考试(ENEM)越来越重要,它逐渐取代了传统的前庭考试。许多模拟几乎是由老师或系统随机完成的,问题的选择没有经过斟酌。使用这种方法,如果需要重新应用测试,则不可能使用与第一次评估中使用的问题具有相同难度的问题重新创建测试。在这种情况下,目前的工作提出了一个ENEM智能模拟生成系统的发展,该系统计算已经在ENEM中应用的问题的项目反应理论(TRI)的参数,并基于它们对它们进行分类。在组的难度,从而能够生成平衡的测试。为此,使用K-means算法将问题分为简单、中等和困难三个难度组。为了验证系统的功能,沿着ENEM模型生成了一个包含180个问题的仿真。可以看出,在37.7%的案例中发生了这种情况。这个命中率并不高,因为算法混淆了在相近类别中的问题的难度。然而,该系统在远距离分类问题方面的准确率为92.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Computational Strategy for Classification of Enem Issues Based on Item Response Theory
The National High School Examination (ENEM) gains each year more importance, as it gradually, replacing traditional vestibular. Many simulations are done almost randomly by teachers or systems, with questions chosen without discretion. With this methodology, if a test needs to be reapplied, it is not possible to recreate it with questions that have the same difficulty as those used in the first evaluation. In this context, the present work presents the development of an ENEM Intelligent Simulation Generation System that calculates the parameters of Item Response Theory (TRI) of questions that have already been applied in ENEM and, based on them, classifies them. in groups of difficulty, thus enabling the generation of balanced tests. For this, the K-means algorithm was used to group the questions into three difficulty groups: easy, medium and difficult. To verify the functioning of the system, a simulation with 180 questions was generated along the ENEM model. It could be seen that in 37.7% of cases this happened. This hit rate was not greater because the algorithm confounded the difficulty of issues that are in close classes. However, the system has a hit rate of 92.8% in the classification of questions that are in distant groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信