二部有限维系统中纠缠的格兰曼方法:纯态的情况

R. Gielerak, Marek Sawerwain
{"title":"二部有限维系统中纠缠的格兰曼方法:纯态的情况","authors":"R. Gielerak, Marek Sawerwain","doi":"10.26421/QIC20.13-14-1","DOIUrl":null,"url":null,"abstract":"It has been observed that the reduced density matrices of bipartite qudit pure states possess a Gram matrix structure. This observation has opened a possibility of analysing the entanglement in such systems from the purely geometrical point of view. In particular, a new quantitative measure of an entanglement of the geometrical nature, has been proposed. Using the invented Gram matrix approach, a version of a non-linear purification of mixed states describing the system analysed has been presented.","PeriodicalId":20904,"journal":{"name":"Quantum Inf. Comput.","volume":"34 1","pages":"1081-1108"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Gramian approach to entanglement in bipartite finite dimensional systems: the case of pure states\",\"authors\":\"R. Gielerak, Marek Sawerwain\",\"doi\":\"10.26421/QIC20.13-14-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It has been observed that the reduced density matrices of bipartite qudit pure states possess a Gram matrix structure. This observation has opened a possibility of analysing the entanglement in such systems from the purely geometrical point of view. In particular, a new quantitative measure of an entanglement of the geometrical nature, has been proposed. Using the invented Gram matrix approach, a version of a non-linear purification of mixed states describing the system analysed has been presented.\",\"PeriodicalId\":20904,\"journal\":{\"name\":\"Quantum Inf. Comput.\",\"volume\":\"34 1\",\"pages\":\"1081-1108\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Inf. Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26421/QIC20.13-14-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Inf. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26421/QIC20.13-14-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

观察到二部量子纯态的约简密度矩阵具有革兰氏矩阵结构。这一观察为从纯几何角度分析这类系统中的纠缠提供了可能性。特别是,提出了一种新的几何性质纠缠的定量度量方法。利用发明的格拉姆矩阵方法,提出了一种描述所分析系统的混合状态的非线性纯化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Gramian approach to entanglement in bipartite finite dimensional systems: the case of pure states
It has been observed that the reduced density matrices of bipartite qudit pure states possess a Gram matrix structure. This observation has opened a possibility of analysing the entanglement in such systems from the purely geometrical point of view. In particular, a new quantitative measure of an entanglement of the geometrical nature, has been proposed. Using the invented Gram matrix approach, a version of a non-linear purification of mixed states describing the system analysed has been presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信