为规则生成算法设置表示

Carynthia Kharkongor, B. Nath
{"title":"为规则生成算法设置表示","authors":"Carynthia Kharkongor, B. Nath","doi":"10.7494/csci.2022.23.2.4071","DOIUrl":null,"url":null,"abstract":"The task of mining the association rule has become one of the most widely used discovery pattern methods in Knowledge Discovery in Databases (KDD). One such task is to represent the itemset in the memory. The representation of the itemset largely depend on the type of data structure that is used for storing them. Computing the process of mining the association rule im- pacts the memory and time requirement of the itemset. With the increase in the dimensionality of data and datasets, mining such large volume of datasets will be difficult since all these itemsets cannot be placed in the main memory. As representation of an itemset greatly affects the efficiency of the rule mining association, a compact and compress representation of an itemset is needed. In this paper, a set representation is introduced which is more memory and cost efficient. Bitmap representation takes one byte for an element but the set representation uses one bit. The set representation is being incorporated in Apriori Algorithm. Set representation is also being tested for different rule generation algorithms. The complexities of these different rule generation algorithms using set representation are being compared in terms of memory and time execution.","PeriodicalId":23063,"journal":{"name":"Theor. Comput. Sci.","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Set Representation for Rule Generation Algorithms\",\"authors\":\"Carynthia Kharkongor, B. Nath\",\"doi\":\"10.7494/csci.2022.23.2.4071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The task of mining the association rule has become one of the most widely used discovery pattern methods in Knowledge Discovery in Databases (KDD). One such task is to represent the itemset in the memory. The representation of the itemset largely depend on the type of data structure that is used for storing them. Computing the process of mining the association rule im- pacts the memory and time requirement of the itemset. With the increase in the dimensionality of data and datasets, mining such large volume of datasets will be difficult since all these itemsets cannot be placed in the main memory. As representation of an itemset greatly affects the efficiency of the rule mining association, a compact and compress representation of an itemset is needed. In this paper, a set representation is introduced which is more memory and cost efficient. Bitmap representation takes one byte for an element but the set representation uses one bit. The set representation is being incorporated in Apriori Algorithm. Set representation is also being tested for different rule generation algorithms. The complexities of these different rule generation algorithms using set representation are being compared in terms of memory and time execution.\",\"PeriodicalId\":23063,\"journal\":{\"name\":\"Theor. Comput. Sci.\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theor. Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7494/csci.2022.23.2.4071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theor. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/csci.2022.23.2.4071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

关联规则挖掘任务已成为数据库知识发现(KDD)中应用最广泛的发现模式方法之一。其中一项任务是在内存中表示项集。项目集的表示在很大程度上取决于用于存储它们的数据结构的类型。关联规则挖掘过程的计算会影响项集的内存和时间需求。随着数据和数据集维度的增加,挖掘如此大量的数据集将变得困难,因为这些项目集不能全部放在主存储器中。由于项集的表示形式对规则挖掘关联的效率影响很大,因此需要对项集进行压缩表示。本文引入了一种集表示,它具有更高的内存和成本效益。位图表示法使用一个字节表示元素,而集合表示法使用一个字节表示元素。集合表示正在被纳入Apriori算法。集合表示也正在针对不同的规则生成算法进行测试。从内存和执行时间的角度比较了使用集合表示的这些不同规则生成算法的复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Set Representation for Rule Generation Algorithms
The task of mining the association rule has become one of the most widely used discovery pattern methods in Knowledge Discovery in Databases (KDD). One such task is to represent the itemset in the memory. The representation of the itemset largely depend on the type of data structure that is used for storing them. Computing the process of mining the association rule im- pacts the memory and time requirement of the itemset. With the increase in the dimensionality of data and datasets, mining such large volume of datasets will be difficult since all these itemsets cannot be placed in the main memory. As representation of an itemset greatly affects the efficiency of the rule mining association, a compact and compress representation of an itemset is needed. In this paper, a set representation is introduced which is more memory and cost efficient. Bitmap representation takes one byte for an element but the set representation uses one bit. The set representation is being incorporated in Apriori Algorithm. Set representation is also being tested for different rule generation algorithms. The complexities of these different rule generation algorithms using set representation are being compared in terms of memory and time execution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信