基于TEP的MIPCR故障检测新方法

A. Zhang, Chengcong Lv, Xing Huo, Zhiyong She
{"title":"基于TEP的MIPCR故障检测新方法","authors":"A. Zhang, Chengcong Lv, Xing Huo, Zhiyong She","doi":"10.1109/DDCLS.2019.8908998","DOIUrl":null,"url":null,"abstract":"Principal component regression (PCR) is not only a kind of multivariate statistical method, but also a type of data-driven method. The improved PCR (IPCR) optimizes the performance of fault detection for Tennessee Eastman process (TEP). IPCR could solve the unsatisfactory detection performance generated by the incomplete sample decomposition. Multiple IPCR (MIPCR) is a novel improved method relative to IPCR. It uses multiple quality variables to detect product quality at the same time. And the results, obtained via MIPCR, are fused. Then screening the variables via the fault performance is done. Simulations for Tennessee Eastman process (TEP) are presented with PCR, IPCR and MIPCR. Via the simulations, the validity and superiority of MIPCR are all verified.","PeriodicalId":6699,"journal":{"name":"2019 IEEE 8th Data Driven Control and Learning Systems Conference (DDCLS)","volume":"184 4 1","pages":"388-393"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Novel Method of Fault Detection Method for TEP based MIPCR\",\"authors\":\"A. Zhang, Chengcong Lv, Xing Huo, Zhiyong She\",\"doi\":\"10.1109/DDCLS.2019.8908998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Principal component regression (PCR) is not only a kind of multivariate statistical method, but also a type of data-driven method. The improved PCR (IPCR) optimizes the performance of fault detection for Tennessee Eastman process (TEP). IPCR could solve the unsatisfactory detection performance generated by the incomplete sample decomposition. Multiple IPCR (MIPCR) is a novel improved method relative to IPCR. It uses multiple quality variables to detect product quality at the same time. And the results, obtained via MIPCR, are fused. Then screening the variables via the fault performance is done. Simulations for Tennessee Eastman process (TEP) are presented with PCR, IPCR and MIPCR. Via the simulations, the validity and superiority of MIPCR are all verified.\",\"PeriodicalId\":6699,\"journal\":{\"name\":\"2019 IEEE 8th Data Driven Control and Learning Systems Conference (DDCLS)\",\"volume\":\"184 4 1\",\"pages\":\"388-393\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 8th Data Driven Control and Learning Systems Conference (DDCLS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DDCLS.2019.8908998\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 8th Data Driven Control and Learning Systems Conference (DDCLS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDCLS.2019.8908998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

主成分回归(PCR)是一种多元统计方法,也是一种数据驱动的方法。改进的PCR (IPCR)优化了田纳西伊士曼过程(TEP)的故障检测性能。IPCR可以解决由于样品分解不完全而产生的检测性能不理想的问题。多重IPCR (MIPCR)是相对于IPCR的一种新的改进方法。它使用多个质量变量同时检测产品质量。通过MIPCR得到的结果进行融合。然后通过故障性能对变量进行筛选。用PCR、IPCR和micpcr对田纳西伊士曼工艺(TEP)进行了模拟。通过仿真验证了该方法的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Method of Fault Detection Method for TEP based MIPCR
Principal component regression (PCR) is not only a kind of multivariate statistical method, but also a type of data-driven method. The improved PCR (IPCR) optimizes the performance of fault detection for Tennessee Eastman process (TEP). IPCR could solve the unsatisfactory detection performance generated by the incomplete sample decomposition. Multiple IPCR (MIPCR) is a novel improved method relative to IPCR. It uses multiple quality variables to detect product quality at the same time. And the results, obtained via MIPCR, are fused. Then screening the variables via the fault performance is done. Simulations for Tennessee Eastman process (TEP) are presented with PCR, IPCR and MIPCR. Via the simulations, the validity and superiority of MIPCR are all verified.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信