选择新鲜和干燥生产的利马豆原料

Loren R. Damas, P. A. Barroso, W. V. D. ASSUNÇÃO NETO, Â. C. D. A. Lopes, J. J. D. Silva Junior, R. L. F. Gomes, A. M. Medeiros
{"title":"选择新鲜和干燥生产的利马豆原料","authors":"Loren R. Damas, P. A. Barroso, W. V. D. ASSUNÇÃO NETO, Â. C. D. A. Lopes, J. J. D. Silva Junior, R. L. F. Gomes, A. M. Medeiros","doi":"10.1590/1807-1929/agriambi.v27n8p625-631","DOIUrl":null,"url":null,"abstract":"ABSTRACT The selection of lima bean accessions in the fresh and dry stages is an excellent tool to increase crop yield in Brazil and ensure a source of vegetable protein for the population. Principal component analysis and nonparametric indices can be used to identify promising accessions based on the desired agronomic variables. The aim of the present study was to select accessions from traditional lima bean varieties in the fresh and dry stages using principal component analysis and nonparametric selection indices. The experiment consisted of a randomized block design, evaluating 13 treatments in four replicates. The experimental plot contained 20 plants in its study area. The first two principal components for the two stages explained more than 80% of the variation found among the accessions. The Mulamba & Mock and Genotype-Ideotype selection indices were efficient in classifying promising varieties for breeding programs. The UFPI 1111 accession can be used in fresh lima bean production, and its UFPI 1248 and 1294 counterparts in lima bean breeding programs.","PeriodicalId":21302,"journal":{"name":"Revista Brasileira de Engenharia Agrícola e Ambiental","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Selection of lima bean accessions for fresh and dry production\",\"authors\":\"Loren R. Damas, P. A. Barroso, W. V. D. ASSUNÇÃO NETO, Â. C. D. A. Lopes, J. J. D. Silva Junior, R. L. F. Gomes, A. M. Medeiros\",\"doi\":\"10.1590/1807-1929/agriambi.v27n8p625-631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The selection of lima bean accessions in the fresh and dry stages is an excellent tool to increase crop yield in Brazil and ensure a source of vegetable protein for the population. Principal component analysis and nonparametric indices can be used to identify promising accessions based on the desired agronomic variables. The aim of the present study was to select accessions from traditional lima bean varieties in the fresh and dry stages using principal component analysis and nonparametric selection indices. The experiment consisted of a randomized block design, evaluating 13 treatments in four replicates. The experimental plot contained 20 plants in its study area. The first two principal components for the two stages explained more than 80% of the variation found among the accessions. The Mulamba & Mock and Genotype-Ideotype selection indices were efficient in classifying promising varieties for breeding programs. The UFPI 1111 accession can be used in fresh lima bean production, and its UFPI 1248 and 1294 counterparts in lima bean breeding programs.\",\"PeriodicalId\":21302,\"journal\":{\"name\":\"Revista Brasileira de Engenharia Agrícola e Ambiental\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Brasileira de Engenharia Agrícola e Ambiental\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1590/1807-1929/agriambi.v27n8p625-631\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Brasileira de Engenharia Agrícola e Ambiental","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/1807-1929/agriambi.v27n8p625-631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在新鲜和干燥阶段选择利马豆材料是提高巴西作物产量和确保人口植物蛋白来源的绝佳工具。主成分分析和非参数指标可以根据期望的农艺变量来识别有希望的材料。本研究采用主成分分析和非参数选择指标对传统青豆品种在鲜干期进行选育。试验采用随机区组设计,分4个重复评估13个处理。研究区试验田共种植20株植物。两个阶段的前两个主成分解释了80%以上的变异。Mulamba & Mock和基因型-理想型选择指数是有效的品种分类方法。upp1111可用于新鲜利马豆生产,其upp1248和1294对应品种可用于利马豆育种计划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Selection of lima bean accessions for fresh and dry production
ABSTRACT The selection of lima bean accessions in the fresh and dry stages is an excellent tool to increase crop yield in Brazil and ensure a source of vegetable protein for the population. Principal component analysis and nonparametric indices can be used to identify promising accessions based on the desired agronomic variables. The aim of the present study was to select accessions from traditional lima bean varieties in the fresh and dry stages using principal component analysis and nonparametric selection indices. The experiment consisted of a randomized block design, evaluating 13 treatments in four replicates. The experimental plot contained 20 plants in its study area. The first two principal components for the two stages explained more than 80% of the variation found among the accessions. The Mulamba & Mock and Genotype-Ideotype selection indices were efficient in classifying promising varieties for breeding programs. The UFPI 1111 accession can be used in fresh lima bean production, and its UFPI 1248 and 1294 counterparts in lima bean breeding programs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信