交换环的强湮灭理想图的度规维数

Pub Date : 2020-11-01 DOI:10.2478/ausm-2020-0025
V. Soleymanivarniab, R. Nikandish, A. Tehranian
{"title":"交换环的强湮灭理想图的度规维数","authors":"V. Soleymanivarniab, R. Nikandish, A. Tehranian","doi":"10.2478/ausm-2020-0025","DOIUrl":null,"url":null,"abstract":"Abstract Let 𝒭 be a commutative ring with identity and 𝒜(𝒭) be the set of ideals with non-zero annihilator. The strongly annihilating-ideal graph of 𝒭 is defined as the graph SAG(𝒭) with the vertex set 𝒜 (𝒭)* = 𝒜 (𝒭) \\{0} and two distinct vertices I and J are adjacent if and only if I ∩ Ann(J) ≠ (0) and J ∩ Ann(I) ≠ (0). In this paper, we study the metric dimension of SAG(𝒭) and some metric dimension formulae for strongly annihilating-ideal graphs are given.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the metric dimension of strongly annihilating-ideal graphs of commutative rings\",\"authors\":\"V. Soleymanivarniab, R. Nikandish, A. Tehranian\",\"doi\":\"10.2478/ausm-2020-0025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let 𝒭 be a commutative ring with identity and 𝒜(𝒭) be the set of ideals with non-zero annihilator. The strongly annihilating-ideal graph of 𝒭 is defined as the graph SAG(𝒭) with the vertex set 𝒜 (𝒭)* = 𝒜 (𝒭) \\\\{0} and two distinct vertices I and J are adjacent if and only if I ∩ Ann(J) ≠ (0) and J ∩ Ann(I) ≠ (0). In this paper, we study the metric dimension of SAG(𝒭) and some metric dimension formulae for strongly annihilating-ideal graphs are given.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ausm-2020-0025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausm-2020-0025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设𝒭是一个具有恒等式的交换环,且𝒭是具有非零湮灭子的理想集合。定义了𝒭的强湮灭理想图SAG(𝒭),其顶点集为:(𝒭)* =(𝒭)\{0},且两个不同的顶点I和J相邻当且仅当I∩Ann(J)≠(0)且J∩Ann(I)≠(0)。本文研究了SAG(𝒭)的度量维数,并给出了一些强湮灭理想图的度量维数公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the metric dimension of strongly annihilating-ideal graphs of commutative rings
Abstract Let 𝒭 be a commutative ring with identity and 𝒜(𝒭) be the set of ideals with non-zero annihilator. The strongly annihilating-ideal graph of 𝒭 is defined as the graph SAG(𝒭) with the vertex set 𝒜 (𝒭)* = 𝒜 (𝒭) \{0} and two distinct vertices I and J are adjacent if and only if I ∩ Ann(J) ≠ (0) and J ∩ Ann(I) ≠ (0). In this paper, we study the metric dimension of SAG(𝒭) and some metric dimension formulae for strongly annihilating-ideal graphs are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信