有限粗形逆系统方法和本征方法

Pub Date : 2022-06-28 DOI:10.3336/gm.57.1.07
I. Jelić, Nikola Koceić Bilan
{"title":"有限粗形逆系统方法和本征方法","authors":"I. Jelić, Nikola Koceić Bilan","doi":"10.3336/gm.57.1.07","DOIUrl":null,"url":null,"abstract":"Given an arbitrary category \\(\\mathcal{C}\\), a category \\(pro^{*^f}\\)-\\(\\mathcal{C}\\) is constructed such that the known \\(pro\\)-\\(\\mathcal{C}\\) category may be considered as a subcategory of \\(pro^{*^f}\\)-\\(\\mathcal{C}\\) and that \\(pro^{*^f}\\)-\\(\\mathcal{C}\\) may be considered as a subcategory of \\(pro^*\\)-\\(\\mathcal{C}\\). Analogously to the construction of the shape category \\(Sh_{(\\mathcal{C},\\mathcal{D})}\\) and the coarse category \\(Sh^*_{(\\mathcal{C},\\mathcal{D})}\\), an (abstract) finite coarse shape category \\(Sh^{*^f}_{(\\mathcal{C},\\mathcal{D})}\\) is obtained. Between these three categories appropriate faithful functors are defined. The finite coarse shape is also defined by an intrinsic approach using the notion of the \\(\\epsilon\\)-continuity. The isomorphism of the finite coarse shape categories obtained by these two approaches is constructed. Besides, an overview of some basic properties related to the notion of the \\(\\epsilon\\)-continuity is given.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The finite coarse shape - inverse systems approach and intrinsic approach\",\"authors\":\"I. Jelić, Nikola Koceić Bilan\",\"doi\":\"10.3336/gm.57.1.07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given an arbitrary category \\\\(\\\\mathcal{C}\\\\), a category \\\\(pro^{*^f}\\\\)-\\\\(\\\\mathcal{C}\\\\) is constructed such that the known \\\\(pro\\\\)-\\\\(\\\\mathcal{C}\\\\) category may be considered as a subcategory of \\\\(pro^{*^f}\\\\)-\\\\(\\\\mathcal{C}\\\\) and that \\\\(pro^{*^f}\\\\)-\\\\(\\\\mathcal{C}\\\\) may be considered as a subcategory of \\\\(pro^*\\\\)-\\\\(\\\\mathcal{C}\\\\). Analogously to the construction of the shape category \\\\(Sh_{(\\\\mathcal{C},\\\\mathcal{D})}\\\\) and the coarse category \\\\(Sh^*_{(\\\\mathcal{C},\\\\mathcal{D})}\\\\), an (abstract) finite coarse shape category \\\\(Sh^{*^f}_{(\\\\mathcal{C},\\\\mathcal{D})}\\\\) is obtained. Between these three categories appropriate faithful functors are defined. The finite coarse shape is also defined by an intrinsic approach using the notion of the \\\\(\\\\epsilon\\\\)-continuity. The isomorphism of the finite coarse shape categories obtained by these two approaches is constructed. Besides, an overview of some basic properties related to the notion of the \\\\(\\\\epsilon\\\\)-continuity is given.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3336/gm.57.1.07\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3336/gm.57.1.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

给定一个任意的类别\(\mathcal{C}\),一个类别\(pro^{*^f}\) - \(\mathcal{C}\)被构造,使得已知的\(pro\) - \(\mathcal{C}\)可以被认为是\(pro^{*^f}\) - \(\mathcal{C}\)的子类别,而\(pro^{*^f}\) - \(\mathcal{C}\)可以被认为是\(pro^*\) - \(\mathcal{C}\)的子类别。类似于形状范畴\(Sh_{(\mathcal{C},\mathcal{D})}\)和粗范畴\(Sh^*_{(\mathcal{C},\mathcal{D})}\)的构造,得到了一个(抽象的)有限粗范畴\(Sh^{*^f}_{(\mathcal{C},\mathcal{D})}\)。在这三个范畴之间定义了适当的忠实函子。有限粗形状也由使用\(\epsilon\) -连续性概念的内在方法定义。构造了这两种方法得到的有限粗形范畴的同构性。此外,还概述了与\(\epsilon\) -连续性概念有关的一些基本性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The finite coarse shape - inverse systems approach and intrinsic approach
Given an arbitrary category \(\mathcal{C}\), a category \(pro^{*^f}\)-\(\mathcal{C}\) is constructed such that the known \(pro\)-\(\mathcal{C}\) category may be considered as a subcategory of \(pro^{*^f}\)-\(\mathcal{C}\) and that \(pro^{*^f}\)-\(\mathcal{C}\) may be considered as a subcategory of \(pro^*\)-\(\mathcal{C}\). Analogously to the construction of the shape category \(Sh_{(\mathcal{C},\mathcal{D})}\) and the coarse category \(Sh^*_{(\mathcal{C},\mathcal{D})}\), an (abstract) finite coarse shape category \(Sh^{*^f}_{(\mathcal{C},\mathcal{D})}\) is obtained. Between these three categories appropriate faithful functors are defined. The finite coarse shape is also defined by an intrinsic approach using the notion of the \(\epsilon\)-continuity. The isomorphism of the finite coarse shape categories obtained by these two approaches is constructed. Besides, an overview of some basic properties related to the notion of the \(\epsilon\)-continuity is given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信