基于两步Radau IIA方法的变步长控制

S. G. Pinto, D. H. Abreu, J. I. Montijano
{"title":"基于两步Radau IIA方法的变步长控制","authors":"S. G. Pinto, D. H. Abreu, J. I. Montijano","doi":"10.1145/3408892","DOIUrl":null,"url":null,"abstract":"Two-step embedded methods of order s based on s-stage Radau IIA formulas are considered for the variable step-size integration of stiff differential equations. These embedded methods are aimed at local error control and are computed through a linear combination of the internal stages of the underlying method in the last two steps. Particular embedded methods for 2 ≤ s ≤ 7 internal stages with good stability properties and damping for the stiff components are constructed. Furthermore, a new formula for step-size change is proposed, having the advantage that it can be applied to any s-stage Radau IIA method. It is shown through numerical testing on some representative stiff problems that the RADAU5 code by Hairer and Wanner with the new strategy performs as well or even better as with the standard one, which is only feasible for an odd number of stages. Numerical experiments support the efficiency and flexibility of the new step-size change strategy.","PeriodicalId":7036,"journal":{"name":"ACM Transactions on Mathematical Software (TOMS)","volume":"12 1","pages":"1 - 24"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Variable Step-Size Control Based on Two-Steps for Radau IIA Methods\",\"authors\":\"S. G. Pinto, D. H. Abreu, J. I. Montijano\",\"doi\":\"10.1145/3408892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two-step embedded methods of order s based on s-stage Radau IIA formulas are considered for the variable step-size integration of stiff differential equations. These embedded methods are aimed at local error control and are computed through a linear combination of the internal stages of the underlying method in the last two steps. Particular embedded methods for 2 ≤ s ≤ 7 internal stages with good stability properties and damping for the stiff components are constructed. Furthermore, a new formula for step-size change is proposed, having the advantage that it can be applied to any s-stage Radau IIA method. It is shown through numerical testing on some representative stiff problems that the RADAU5 code by Hairer and Wanner with the new strategy performs as well or even better as with the standard one, which is only feasible for an odd number of stages. Numerical experiments support the efficiency and flexibility of the new step-size change strategy.\",\"PeriodicalId\":7036,\"journal\":{\"name\":\"ACM Transactions on Mathematical Software (TOMS)\",\"volume\":\"12 1\",\"pages\":\"1 - 24\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Mathematical Software (TOMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3408892\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Mathematical Software (TOMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3408892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

针对刚性微分方程的变步长积分问题,考虑了基于s阶Radau IIA公式的s阶两步嵌入方法。这些嵌入方法旨在局部误差控制,并通过最后两个步骤中底层方法的内部阶段的线性组合来计算。构建了2≤s≤7个具有良好稳定性和刚性构件阻尼的内级的特殊嵌入方法。此外,还提出了一个新的步长变化公式,该公式可以适用于任何s级Radau IIA方法。通过对一些具有代表性的刚性问题的数值测试表明,采用新策略的RADAU5代码与采用标准策略的RADAU5代码性能相当,甚至更好,但标准策略只适用于奇数阶。数值实验验证了该方法的有效性和灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variable Step-Size Control Based on Two-Steps for Radau IIA Methods
Two-step embedded methods of order s based on s-stage Radau IIA formulas are considered for the variable step-size integration of stiff differential equations. These embedded methods are aimed at local error control and are computed through a linear combination of the internal stages of the underlying method in the last two steps. Particular embedded methods for 2 ≤ s ≤ 7 internal stages with good stability properties and damping for the stiff components are constructed. Furthermore, a new formula for step-size change is proposed, having the advantage that it can be applied to any s-stage Radau IIA method. It is shown through numerical testing on some representative stiff problems that the RADAU5 code by Hairer and Wanner with the new strategy performs as well or even better as with the standard one, which is only feasible for an odd number of stages. Numerical experiments support the efficiency and flexibility of the new step-size change strategy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信