平衡聚类值和可解释性之间的权衡

Sandhya Saisubramanian, Sainyam Galhotra, S. Zilberstein
{"title":"平衡聚类值和可解释性之间的权衡","authors":"Sandhya Saisubramanian, Sainyam Galhotra, S. Zilberstein","doi":"10.1145/3375627.3375843","DOIUrl":null,"url":null,"abstract":"Graph clustering groups entities -- the vertices of a graph -- based on their similarity, typically using a complex distance function over a large number of features. Successful integration of clustering approaches in automated decision-support systems hinges on the interpretability of the resulting clusters. This paper addresses the problem of generating interpretable clusters, given features of interest that signify interpretability to an end-user, by optimizing interpretability in addition to common clustering objectives. We propose a β-interpretable clustering algorithm that ensures that at least β fraction of nodes in each cluster share the same feature value. The tunable parameter β is user-specified. We also present a more efficient algorithm for scenarios with β\\!=\\!1$ and analyze the theoretical guarantees of the two algorithms. Finally, we empirically demonstrate the benefits of our approaches in generating interpretable clusters using four real-world datasets. The interpretability of the clusters is complemented by generating simple explanations denoting the feature values of the nodes in the clusters, using frequent pattern mining.","PeriodicalId":93612,"journal":{"name":"Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Balancing the Tradeoff Between Clustering Value and Interpretability\",\"authors\":\"Sandhya Saisubramanian, Sainyam Galhotra, S. Zilberstein\",\"doi\":\"10.1145/3375627.3375843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graph clustering groups entities -- the vertices of a graph -- based on their similarity, typically using a complex distance function over a large number of features. Successful integration of clustering approaches in automated decision-support systems hinges on the interpretability of the resulting clusters. This paper addresses the problem of generating interpretable clusters, given features of interest that signify interpretability to an end-user, by optimizing interpretability in addition to common clustering objectives. We propose a β-interpretable clustering algorithm that ensures that at least β fraction of nodes in each cluster share the same feature value. The tunable parameter β is user-specified. We also present a more efficient algorithm for scenarios with β\\\\!=\\\\!1$ and analyze the theoretical guarantees of the two algorithms. Finally, we empirically demonstrate the benefits of our approaches in generating interpretable clusters using four real-world datasets. The interpretability of the clusters is complemented by generating simple explanations denoting the feature values of the nodes in the clusters, using frequent pattern mining.\",\"PeriodicalId\":93612,\"journal\":{\"name\":\"Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3375627.3375843\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3375627.3375843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

图聚类基于相似度对实体(图的顶点)进行分组,通常在大量特征上使用复杂的距离函数。自动决策支持系统中聚类方法的成功集成取决于结果聚类的可解释性。本文通过优化可解释性以及常见的聚类目标,解决了生成可解释性聚类的问题,给出了最终用户感兴趣的可解释性特征。我们提出了一种β-可解释聚类算法,该算法确保每个聚类中至少β分数的节点共享相同的特征值。可调参数β由用户指定。我们还提出了一个更有效的算法,用于β\!=\!并分析了这两种算法的理论保证。最后,我们通过经验证明了我们的方法在使用四个真实数据集生成可解释的聚类方面的好处。通过使用频繁的模式挖掘,生成表示聚类中节点特征值的简单解释,补充了聚类的可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Balancing the Tradeoff Between Clustering Value and Interpretability
Graph clustering groups entities -- the vertices of a graph -- based on their similarity, typically using a complex distance function over a large number of features. Successful integration of clustering approaches in automated decision-support systems hinges on the interpretability of the resulting clusters. This paper addresses the problem of generating interpretable clusters, given features of interest that signify interpretability to an end-user, by optimizing interpretability in addition to common clustering objectives. We propose a β-interpretable clustering algorithm that ensures that at least β fraction of nodes in each cluster share the same feature value. The tunable parameter β is user-specified. We also present a more efficient algorithm for scenarios with β\!=\!1$ and analyze the theoretical guarantees of the two algorithms. Finally, we empirically demonstrate the benefits of our approaches in generating interpretable clusters using four real-world datasets. The interpretability of the clusters is complemented by generating simple explanations denoting the feature values of the nodes in the clusters, using frequent pattern mining.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信