关于恒星大小的多部拉姆齐数

Anie Lusiani, E. Baskoro, S. Saputro
{"title":"关于恒星大小的多部拉姆齐数","authors":"Anie Lusiani, E. Baskoro, S. Saputro","doi":"10.19184/ijc.2019.3.2.4","DOIUrl":null,"url":null,"abstract":"<p>Burger and Vuuren defined the size multipartite Ramsey number for a pair of complete, balanced, multipartite graphs <em>mj</em>(<em>Ka</em>x<em>b</em>,<em>Kc</em>x<em>d</em>), for natural numbers <em>a,b,c,d</em> and <em>j</em>, where <em>a,c</em> >= 2, in 2004. They have also determined the necessary and sufficient conditions for the existence of size multipartite Ramsey numbers <em>mj</em>(<em>Ka</em>x<em>b</em>,<em>Kc</em>x<em>d</em>). Syafrizal <em>et al</em>. generalized this definition by removing the completeness requirement. For simple graphs <em>G</em> and <em>H</em>, they defined the size multipartite Ramsey number <em>mj</em>(<em>G,H</em>) as the smallest natural number <em>t</em> such that any red-blue coloring on the edges of <em>Kj</em>x<em>t</em> contains a red <em>G</em> or a blue <em>H</em> as a subgraph. In this paper, we determine the necessary and sufficient conditions for the existence of multipartite Ramsey numbers <em>mj</em>(<em>G,H</em>), where both <em>G</em> and <em>H</em> are non complete graphs. Furthermore, we determine the exact values of the size multipartite Ramsey numbers <em>mj</em>(<em>K</em>1,<em>m</em>, <em>K</em>1,<em>n</em>) for all integers <em>m,n >= </em>1 and <em>j </em>= 2,3, where <em>K</em>1,<em>m</em> is a star of order <em>m</em>+1. In addition, we also determine the lower bound of <em>m</em>3(<em>kK</em>1,<em>m</em>, <em>C</em>3), where <em>kK</em>1,<em>m</em> is a disjoint union of <em>k</em> copies of a star <em>K</em>1,<em>m</em> and <em>C</em>3 is a cycle of order 3.</p>","PeriodicalId":13506,"journal":{"name":"Indonesian Journal of Combinatorics","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On size multipartite Ramsey numbers for stars\",\"authors\":\"Anie Lusiani, E. Baskoro, S. Saputro\",\"doi\":\"10.19184/ijc.2019.3.2.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Burger and Vuuren defined the size multipartite Ramsey number for a pair of complete, balanced, multipartite graphs <em>mj</em>(<em>Ka</em>x<em>b</em>,<em>Kc</em>x<em>d</em>), for natural numbers <em>a,b,c,d</em> and <em>j</em>, where <em>a,c</em> >= 2, in 2004. They have also determined the necessary and sufficient conditions for the existence of size multipartite Ramsey numbers <em>mj</em>(<em>Ka</em>x<em>b</em>,<em>Kc</em>x<em>d</em>). Syafrizal <em>et al</em>. generalized this definition by removing the completeness requirement. For simple graphs <em>G</em> and <em>H</em>, they defined the size multipartite Ramsey number <em>mj</em>(<em>G,H</em>) as the smallest natural number <em>t</em> such that any red-blue coloring on the edges of <em>Kj</em>x<em>t</em> contains a red <em>G</em> or a blue <em>H</em> as a subgraph. In this paper, we determine the necessary and sufficient conditions for the existence of multipartite Ramsey numbers <em>mj</em>(<em>G,H</em>), where both <em>G</em> and <em>H</em> are non complete graphs. Furthermore, we determine the exact values of the size multipartite Ramsey numbers <em>mj</em>(<em>K</em>1,<em>m</em>, <em>K</em>1,<em>n</em>) for all integers <em>m,n >= </em>1 and <em>j </em>= 2,3, where <em>K</em>1,<em>m</em> is a star of order <em>m</em>+1. In addition, we also determine the lower bound of <em>m</em>3(<em>kK</em>1,<em>m</em>, <em>C</em>3), where <em>kK</em>1,<em>m</em> is a disjoint union of <em>k</em> copies of a star <em>K</em>1,<em>m</em> and <em>C</em>3 is a cycle of order 3.</p>\",\"PeriodicalId\":13506,\"journal\":{\"name\":\"Indonesian Journal of Combinatorics\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19184/ijc.2019.3.2.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19184/ijc.2019.3.2.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

Burger和Vuuren在2004年定义了对于自然数a,b,c,d和j的一对完全平衡多部图mj(Kaxb,Kcxd)的大小多部拉姆齐数,其中a,c >= 2。他们还确定了大小多部拉姆齐数mj(Kaxb,Kcxd)存在的充分必要条件。Syafrizal等人通过去掉完整性要求来推广这个定义。对于简单图G和H,他们将大小多部拉姆齐数mj(G,H)定义为最小自然数t,使得Kjxt边缘上的任何红蓝着色都包含一个红色G或一个蓝色H作为子图。本文确定了多部Ramsey数mj(G,H)存在的充分必要条件,其中G和H都是非完全图。进一步,我们确定了所有整数m,n >= 1和j = 2,3的大小多部拉姆齐数mj(K1,m, K1,n)的精确值,其中K1,m是m+1阶的星形。此外,我们还确定了m3(kK1,m, C3)的下界,其中kK1,m是一个星K1,m的k个拷贝的不相交并,C3是一个3阶的循环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On size multipartite Ramsey numbers for stars

Burger and Vuuren defined the size multipartite Ramsey number for a pair of complete, balanced, multipartite graphs mj(Kaxb,Kcxd), for natural numbers a,b,c,d and j, where a,c >= 2, in 2004. They have also determined the necessary and sufficient conditions for the existence of size multipartite Ramsey numbers mj(Kaxb,Kcxd). Syafrizal et al. generalized this definition by removing the completeness requirement. For simple graphs G and H, they defined the size multipartite Ramsey number mj(G,H) as the smallest natural number t such that any red-blue coloring on the edges of Kjxt contains a red G or a blue H as a subgraph. In this paper, we determine the necessary and sufficient conditions for the existence of multipartite Ramsey numbers mj(G,H), where both G and H are non complete graphs. Furthermore, we determine the exact values of the size multipartite Ramsey numbers mj(K1,m, K1,n) for all integers m,n >= 1 and = 2,3, where K1,m is a star of order m+1. In addition, we also determine the lower bound of m3(kK1,m, C3), where kK1,m is a disjoint union of k copies of a star K1,m and C3 is a cycle of order 3.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信